如果$α$和$β$是二次多项式$p(s)\ =\ 3s^2\ -\ 6s\ +\ 4$的根,求$\frac{α}{β}\ +\ \frac{β}{α}\ +\ 2\left(\frac{1}{α}\ +\ \frac{1}{β}\right)\ +\ 3αβ$的值。
已知
$α$和$β$是二次多项式$p(s)\ =\ 3s^2\ -\ 6s\ +\ 4$的根。
要求
这里,我们需要求$\frac{α}{β}\ +\ \frac{β}{α}\ +\ 2\left(\frac{1}{α}\ +\ \frac{1}{β}\right)\ +\ 3αβ$的值。
解答:
我们知道,
二次方程的标准形式为$ax^2+bx+c=0$,其中a、b和c是
常数,且$a≠0$
将给定方程与二次方程的标准形式进行比较,
$a=3$,$b=-6$,$c=4$
根的和$= α+β = \frac{-b}{a} = \frac{-(-6)}{3} = -\frac{6}{3}=2$。
根的积$= αβ = \frac{c}{a} = \frac{4}{3}$。
因此,
$ \begin{array}{l}
\frac{\alpha }{\beta } +\frac{\beta }{\alpha } +2\left(\frac{1}{\alpha } +\frac{1}{\beta }\right) +3\alpha \beta =\frac{\alpha ^{2} +\beta ^{2}}{\alpha \beta } +2\left(\frac{\alpha +\beta }{\alpha \beta }\right) +3\alpha \beta \\
\\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{( \alpha +\beta )^{2} -2\alpha \beta }{\alpha \beta } +2\left(\frac{\alpha +\beta }{\alpha \beta }\right) +3\alpha \beta \\
\\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{( 2)^{2} -2\left(\frac{4}{3}\right)}{\frac{4}{3}} +2\left(\frac{2}{\frac{4}{3}}\right) +3\left(\frac{4}{3}\right)\\
\\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{4-\frac{8}{3}}{\frac{4}{3}} +4\left(\frac{3}{4}\right) +4\\
\\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{4\times 3-8}{3} \times \frac{3}{4} +3+4\\
\\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{12-8}{4} +7\\
\\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{4}{4} +7\\
\\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =1+7\\
\\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =8
\end{array}$
$\frac{α}{β}\ +\ \frac{β}{α}\ +\ 2\left(\frac{1}{α}\ +\ \frac{1}{β}\right)\ +\ 3αβ$的值为$8$。