如果 $\overline{98125x2}$ 是一个数,其中 $x$ 是它的十位数字,并且该数可以被 4 整除。求所有可能的 $x$ 的值。


已知

$\overline{98125x2}$ 是一个数,其中 $x$ 是它的十位数字,并且该数可以被 4 整除。

要求

我们必须找到所有可能的 $x$ 的值。

解答

数字 $\overline{98125x2}$ 可以被 4 整除。

这意味着,

由十位数字和个位数字组成的数字也可以被 4 整除。

因此,

$\overline{x2}$ 可以被 4 整除。

如果 $x=1$,则 $x2=12$ 可以被 4 整除。

如果 $x=3$,则 $x2=32$ 可以被 4 整除。

如果 $x=5$,则 $x2=52$ 可以被 4 整除。

如果 $x=7$,则 $x2=72$ 可以被 4 整除。

如果 $x=9$,则 $x2=92$ 可以被 4 整除。

$x$ 的可能取值为 $1, 3, 5, 7$ 和 $9$。

更新时间: 2022年10月10日

48 次浏览

开启你的 职业生涯

通过完成课程获得认证

开始学习
广告