化简:\( \sqrt[lm]{\frac{x^{l}}{x^{m}}} \times \sqrt[m n]{\frac{x^{m}}{x^{n}}} \times \sqrt[n l]{\frac{x^{n}}{x^{l}}} \)
已知
\( \sqrt[lm]{\frac{x^{l}}{x^{m}}} \times \sqrt[m n]{\frac{x^{m}}{x^{n}}} \times \sqrt[n l]{\frac{x^{n}}{x^{l}}} \)
要求:
我们必须化简给定的表达式。
解答
我们知道:
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
因此:
$\sqrt[lm]{\frac{x^{l}}{x^{m}}} \times \sqrt[m n]{\frac{x^{m}}{x^{n}}} \times \sqrt[n l]{\frac{x^{n}}{x^{l}}}=(x^{l-m})^{\frac{1}{l m}} \times (x^{m-n})^{\frac{1}{m n}} \times (x^{n-l})^{\frac{1}{n l}}$
$=x^{\frac{l-m}{l m}} \times x^{\frac{m-n}{m n}} \times x^{\frac{n-l}{n l}}$
$=x^{\frac{l-m}{l m}+\frac{m-n}{m n}+\frac{n-l}{n l}}$
$=x^{\frac{\ln -m n+l m-l n+m n-l m}{l m n}}$
$=x^{\frac{0}{l m n}}$
$=x^{0}$
$=1$
因此,$\sqrt[lm]{\frac{x^{l}}{x^{m}}} \times \sqrt[m n]{\frac{x^{m}}{x^{n}}} \times \sqrt[n l]{\frac{x^{n}}{x^{l}}}=1$。
- 相关文章
- 如果\( a=x^{m+n} y^{l}, b=x^{n+l} y^{m} \) 和 \( c=x^{l+m} y^{n} \),证明 \( a^{m-n} b^{n-1} c^{l-m}=1 \).
- 如果\( x=a^{m+n}, y=a^{n+1} \) 和 \( z=a^{l+m} \),证明 \( x^{m} y^{n} z^{l}=x^{n} y^{l} z^{m} \)
- 求P:Q的数值,其中\( \mathrm{P}=\left(\frac{x^{m}}{x^{n}}\right)^{m+n-l} \times\left(\frac{x^{n}}{x^{l}}\right)^{n+l-m} \times\left(\frac{x^{l}}{x^{m}}\right)^{l+m-n} \) 和\( \mathrm{Q}=\left(x^{1 /(a-b)}\right)^{1 /(a-c)} \times\left(x^{1 /(b-c)}\right)^{1 /(b-a)} \times\left(x^{1 /(c-a)}\right)^{1 /(c-b)} \) 其中\( a, b, c \) 全部不同。A. \( 1: 2 \)B. \( 2: 1 \)C. \( 1: 1 \)D. 以上都不是
- 如果 $l \parallel m$,求x的值。
- 验证下列数字是否为其对应的多项式的零点。(i) \( p(x)=3 x+1, x=-\frac{1}{3} \)(ii) \( p(x)=5 x-\pi, x=\frac{4}{5} \)(iii) \( p(x)=x^{2}-1, x=1,-1 \)(iv) \( p(x)=(x+1)(x-2), x=-1,2 \)(v) \( p(x)=x^{2}, x=0 \)(vi) \( p(x)=l x+m, x=-\frac{m}{l} \)(vii) \( p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}} \)(viii) \( p(x)=2 x+1, x=\frac{1}{2} \)
- $\frac{\sqrt{x}}{16}=\frac{15}{8};\ x=?$
- 解方程:\( \frac{\sqrt{x+a}+\sqrt{x-b}}{\sqrt{x+a}-\sqrt{x-b}}=\frac{a+b}{a-b}(a \ne b) \)
- 验证下列情况下所示数字是否为其对应多项式的零点:\( f(x)=l x+m, x=-\frac{m}{l} \)
- 用因式分解法解下列二次方程:$\frac{m}{n}x^2+\frac{n}{m}=1-2x$
- 如果 $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=x,\ \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=y$,求 $x^{2}+y^{2}+x y$ 的值。
- \( \frac{26^{4} \times 3^{5} \times x^{7}}{13^{3} \times(6 x)^{4}} \)
- 如果 $x\ =\ 2\ +\ 3\sqrt{2}$,求 $x\ + \frac{4}{x}$。
- 如果 $l, m, n$ 是三条直线,且 $l \parallel m$ 且 $n \perp l$,证明 $n \perp m$。
- 下列哪个是多项式?(A) $\frac{x^{2}}{2}-\frac{2}{x^{2}}$(B) $\sqrt{2 x}-1$(C) $ x^{2}+\frac{3 x^{\frac{3}{2}}}{\sqrt{x}}$
- 合并下列单项式:(i) \( 8 x y, 2 x y, 9 x y \)(iv) \( -40 m n,-30 m n, 18 m n \)