如果 $x\ =\ 2\ +\ 3\sqrt{2}$

求 $x\ + \frac{4}{x}$ 的值。


已知:$x\ =\ 2\ +\ 3\sqrt{2}$

求解:我们需要求 $x\ + \frac{4}{x}$ 的值。

解题过程

$x\ +\ \frac{4}{x}$

代入 $x\ =\ 2\ +\ 3\sqrt{2}$ 的值。

$=\ \left( 2\ +\ 3\sqrt{2}\right) \ +\ \frac{4}{2\ +\ 3\sqrt{2}}$

$=\ \frac{\left( 2\ +\ 3\sqrt{2}\right)^{2} \ +\ 4}{2\ +\ 3\sqrt{2}}$

$=\ \frac{( 2)^{2} \ +\ \left( 3\sqrt{2}\right)^{2} \ +\ 2( 2)\left( 3\sqrt{2}\right) \ +\ 4}{2\ +\ 3\sqrt{2}}$

$=\ \frac{4\ +\ 18\ +\ 12\sqrt{2} \ +\ 4}{2\ +\ 3\sqrt{2}}$

$=\ \frac{26\ +\ 12\sqrt{2}}{2\ +\ 3\sqrt{2}}$

$=\ \frac{26\ +\ 12\sqrt{2}}{2\ +\ 3\sqrt{2}} \ \times \ \frac{2\ -\ 3\sqrt{2}}{2\ -\ 3\sqrt{2}}$

$=\ \frac{\left( 26\ +\ 12\sqrt{2}\right)\left( 2\ -\ 3\sqrt{2}\right)}{( 2)^{2} \ -\ \left( 3\sqrt{2}\right)^{2}}$

$=\ \frac{2( 26) \ +\ 2\left( 12\sqrt{2}\right) \ -\ 3\sqrt{2}( 26) \ -\ 3\sqrt{2}\left( 12\sqrt{2}\right)}{4\ -\ 18}$

$=\ \frac{52\ +\ 24\sqrt{2} \ -\ 78\sqrt{2} \ -\ 72}{-\ 14}$

$=\ \frac{-\ 20\ -\ 54\sqrt{2}}{-\ 14}$

$=\ \mathbf{\frac{10\ +\ 27\sqrt{2}}{7}}$

因此,$x\ + \frac{4}{x}$ 的值为 $\frac{10\ +\ 27\sqrt{2}}{7}$。

更新于:2022年10月10日

浏览量:55

开启你的职业生涯

完成课程,获得认证

开始学习
广告
© . All rights reserved.