运用因式分解解决以下二次方程
$x^2-(\sqrt3+1)x+\sqrt3=0$
已知
已知二次方程为 $x^2-(\sqrt3+1)x+\sqrt3=0$。
目标
我们必须解决已知的二次方程。
解决方案
$x^2-(\sqrt3+1)x+\sqrt3=0$
$x^2-\sqrt{3}x-x+\sqrt3=0$
$x(x-\sqrt3)-1(x-\sqrt3)=0$
$(x-1)(x-\sqrt3)=0$
$x-1=0$ 或 $x-\sqrt3=0$
$x=1$ 或 $x=\sqrt3$
$x$ 的值为 $1$ 和 $\sqrt3$。
- 相关文章
- 运用因式分解解决以下二次方程: $\sqrt{3}x^2-2\sqrt{2}x-2\sqrt3=0$
- 运用因式分解解决以下二次方程: $4\sqrt{3}x^2+5x-2\sqrt3=0$
- 运用因式分解解决以下二次方程: $x^2-x-a(a+1)=0$
- 运用因式分解解决以下二次方程: $x^2-(\sqrt{2}+1)x+\sqrt2=0$
- 运用因式分解解决以下二次方程: $a(x^2+1)-x(a^2+1)=0$
- 运用因式分解求解二次方程: $(x\ –\ 4)(x\ +\ 2)\ =\ 0$
- 运用因式分解解决以下二次方程: $x^2+(a+\frac{1}{a})x+1=0$
- 运用因式分解解决以下二次方程: $x\ –\ \frac{1}{x}\ =\ 3,\ x\ ≠\ 0$
- 求以下二次方程判别式: $\sqrt3 x^2 + 2\sqrt2 x - 2\sqrt3 = 0$
- 运用因式分解解决以下二次方程: $\frac{1}{x\ -\ 2}\ +\ \frac{2}{x\ -\ 1}\ =\ \frac
- 通过因式分解法解下列二次方程:$\frac{16}{x}\ –\ 1\ =\ \frac{15}{(x\ +\ 1)},\ x\ ≠\ 0,\ -1$
- 通过因式分解法解下列二次方程:$\frac{1}{x}\ –\ \frac{1}{x\ -\ 2}\ =\ 3$
- 通过因式分解法解下列二次方程:$\frac{x\ +\ 3}{x\ -\ 2}\ -\ \frac{1\ -\ x}{x}\ =\ \frac{17}{4},\ x\ ≠\ 0,\ 2$
- 通过因式分解法解下列二次方程:$\frac{1}{x\ -\ 3}\ +\ \frac{2}{x\ -\ 2}\ =\ \frac{8}{x};\ x\ ≠\ 0,\ 2,\ 3$
- 通过因式分解法解下列二次方程:$\frac{2}{x+1}+\frac{3}{2(x-2)}=\frac{23}{5x}, x ≠0, -1, 2$