减法
从$-\frac{2}{5}$减去$-\frac{1}{4}$
已知
已知数字为$-\frac{1}{4}$和$-\frac{2}{5}$。
要求
我们需要从$-\frac{2}{5}$减去$-\frac{1}{4}$。
解答
$-\frac{2}{5} - (-\frac{1}{4})$
我们知道:
$- \times - = +$
所以,$-\frac{2}{5} + \frac{1}{4}$
改写为:
$\frac{1}{4} - \frac{2}{5}$
现在,分母不同,所以取4和5的最小公倍数。
4和5的最小公倍数是:
$5 \times 4 = 20$。
$\frac{1}{4} - \frac{2}{5}$
$\Rightarrow \frac{1\times 5}{4\times 5} - \frac{2\times 4}{5 \times 4}$
$= \frac{5}{20} - \frac{8}{20}$
$ = \frac{5-8}{20}$
$ = \frac{-3}{20} = -\frac{3}{20}$
因此,$-\frac{2}{5} - (-\frac{1}{4})$的值是$-\frac{3}{20}$
- 相关文章
- $ 4 \frac{4}{5}+\left\{2 \frac{1}{5}-\frac{1}{2}\left(1 \frac{1}{4}-\frac{1}{4}-\frac{1}{5}\right)\right\} $
- 计算下列分数的差:(i) $\frac{2}{5} - \frac{1}{5}$;(ii) $\frac{2}{3} - \frac{1}{2}$
- 计算(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)
- 化简:\( 5 \frac{1}{4} \p 2 \frac{1}{3}-4 \frac{2}{3} \p 5 \frac{1}{3} \times 3 \frac{1}{2} \)
- 计算下列差值:\( \left(4 x^{2}-\frac{1}{5} x+7\right)-\left(-2 x^{2}-\frac{1}{2} x+\frac{1}{3}\right) \)
- 利用合适的性质验证下列等式:$(\frac{5}{4}+\frac{-1}{2})+\frac{-3}{2}= \frac{5}{4}+(\frac{-1}{2}+\frac{-3}{2})$
- 证明:\( \frac{2^{\frac{1}{2}} \times 3^{\frac{1}{3}} \times 4^{\frac{1}{4}}}{10^{\frac{-1}{5}} \times 5^{\frac{3}{5}}} \p \frac{3^{\frac{4}{3}} \times 5^{\frac{-7}{5}}}{4^{\frac{-3}{5}} \times 6}=10 \)
- 从…中减去:(i) \( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \) 从 \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+ \) \( \frac{3}{5} x+\frac{1}{4} \)(ii) \( \frac{5 a^{2}}{2}+\frac{3 a^{3}}{2}+\frac{a}{3}-\frac{6}{5} \) 从 \( \frac{1}{3} a^{3}-\frac{3}{4} a^{2}- \) \( \frac{5}{2} \)(iii) \( \frac{7}{4} x^{3}+\frac{3}{5} x^{2}+\frac{1}{2} x+\frac{9}{2} \) 从 \( \frac{7}{2}-\frac{x}{3}- \) \( \frac{x^{2}}{5} \)(iv) \( \frac{y^{3}}{3}+\frac{7}{3} y^{2}+\frac{1}{2} y+\frac{1}{2} \) 从 \( \frac{1}{3}-\frac{5}{3} y^{2} \)(v) \( \frac{2}{3} a c-\frac{5}{7} a b+\frac{2}{3} b c \) 从 \( \frac{3}{2} a b-\frac{7}{4} a c- \) \( \frac{5}{6} b c \)
- 从 \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+\frac{3}{5} x+\frac{1}{4} \) 中减去 \( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \)
- 画数轴并在其上标出下列各点:(a) \( \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{4}{4} \)(b) \( \frac{1}{8}, \frac{2}{8}, \frac{3}{8}, \frac{7}{8} \)(c) \( \frac{2}{5}, \frac{3}{5}, \frac{8}{5}, \frac{4}{5} \)
- 验证:$\frac{-2}{5} + [\frac{3}{5} + \frac{1}{2}] = [\frac{-2}{5} + \frac{3}{5}] + \frac{1}{2}$
- 计算下列算式:$3 \frac{2}{5} \div \frac{4}{5} of \frac{1}{5} + \frac{2}{3} of \frac{3}{4} - 1 \frac{35}{72}$。
- 将下列数字按升序排列:$\frac{1}{2},\ \frac{4}{5},\ \frac{-2}{3},\ \frac{-1}{2},\ \frac{-5}{7}$。
- 化简下列算式:$(\frac{16}{17} of 6 \frac{4}{5}) -4 \frac{1}{5}-[1 \frac{1}{14} \div(\frac{1}{2}+\frac{1}{7})] $
- 从$\frac{-18}{51}$和$\frac{2}{17}$的和中减去$\frac{1}{85}$和$\frac{-2}{5}$的和。