等腰直角三角形的斜边长为24。求三角形的面积。
已知
等腰直角三角形的斜边长为24。
要求
求三角形的面积。
解答
设另两条边长为x。
在直角三角形中,根据勾股定理,
$x^2 + x^2 = 24^2$
$2x^2= 576$
$x^2 = 288$
$x=\sqrt{288}$
$x = 12\sqrt2$
因此,
三角形的面积 $= \frac{1}{2} \times$ 底 $\times$ 高
面积 $= \frac{1}{2}\times12\sqrt2\times12\sqrt2$
$=144\ cm^2$
三角形的面积为$144\ cm^2$。
广告