返回 NumPy 中一维数组未掩盖块对应的切片列表


要返回与一维数组未掩盖块对应的切片列表,请使用 Python NumPy 中的 **ma.clump_unmasked()**。“块”定义为数组的连续区域。返回切片列表,每个切片对应数组中一个连续的未掩盖元素区域。

掩码数组是标准 numpy.ndarray 和掩码的组合。掩码要么是 nomask(表示关联数组中没有无效值),要么是布尔数组,它确定关联数组的每个元素的值是否有效。

步骤

首先,导入所需的库:

import numpy as np
import numpy.ma as ma

使用 numpy.array() 方法创建一个包含整型元素的数组:

arr = np.array([65, 68, 81, 93, 33, 39, 62, 45, 67])
print("Array...
", arr) print("
Array type...
", arr.dtype)

获取数组的维度:

print("
Array Dimensions...
",arr.ndim)

创建一个掩码数组并将其中一些元素标记为无效:

maskArr = ma.masked_array(arr, mask =[1, 1, 0, 1, 0, 0, 0, 1, 0])
print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)

获取掩码数组的维度:

print("
Our Masked Array Dimensions...
",maskArr.ndim)

获取掩码数组的形状:

print("
Our Masked Array Shape...
",maskArr.shape)

获取掩码数组的元素个数:

print("
Elements in the Masked Array...
",maskArr.size)

返回一个布尔值,指示数据是否连续:

print("
Check whether the data is contiguous?
",maskArr.iscontiguous())

要返回与一维数组未掩盖块对应的切片列表,请使用 ma.clump_unmasked()。“块”定义为数组的连续区域:

print("
Result...
",np.ma.clump_unmasked(maskArr))

示例

import numpy as np
import numpy.ma as ma

# Create an array with int elements using the numpy.array() method
arr = np.array([65, 68, 81, 93, 33, 39, 62, 45, 67])
print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[1, 1, 0, 1, 0, 0, 0, 1, 0]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # Return a boolean indicating whether the data is contiguous print("
Check whether the data is contiguous?
",maskArr.iscontiguous()) # To return a list of slices corresponding to the unmasked clumps of a 1-D array, use the ma.clump_unmasked() in Python Numpy # A "clump" is defined as a contiguous region of the array. print("
Result...
",np.ma.clump_unmasked(maskArr))

输出

Array...
[65 68 81 93 33 39 62 45 67]

Array type...
int64

Array Dimensions...
1

Our Masked Array
[-- -- 81 -- 33 39 62 -- 67]

Our Masked Array type...
int64

Our Masked Array Dimensions...
1

Our Masked Array Shape...
(9,)

Elements in the Masked Array...
9

Check whether the data is contiguous?
True

Result...
[slice(2, 3, None), slice(4, 7, None), slice(8, 9, None)]

更新于:2022年2月4日

85 次浏览

启动您的职业生涯

完成课程获得认证

开始学习
广告