Simplify combining like terms:
$(i)$. $21b-32+7b-20b$
$(ii)$. $-z^2+13z^2-5z+7z^3-15z$
$(iii)$. $p-(p-q)-q-(q-p)$
$iv)$. $3a-2b-ab-(a-b+ab)+3ab+b-a$
$(v)$. $5x^2y-5x^2+3yx^2-3y^2+x^2-y^2+8xy^2-3y^2$
$(vi)$. $(3y2+5y-4)-(8y-y2-4)$
Given: $(i)$. $21b-32+7b-20b$
$(ii)$. $-z^2+13z^2-5z+7z^3-15z$
$(iii)$. $p-(p-q)-q-(q-p)$
$iv)$. $3a-2b-ab-(a-b+ab)+3ab+b-a$
$(v)$. $5x^2y-5x^2+3yx^2-3y^2+x^2-y^2+8xy^2-3y^2$
$(vi)$. $(3y^2+5y-4)-(8y-y^2-4)$
To do: To simplify combining like terms.
Solution:
$(i)$ $21b-32+7b-20b$
$=21b+7b-20b-32$ [On arranging like terms]
$=b(21+7-20)-32$
$=8b-32$
$(ii)$ $-z^2+13z^2-5z+7z^3-15z$
$=7z^{3}+z^2+13z^2-5z+5z-15z$ [On arranging like terms]
$=7z^3+(-1+13)z^2+(-5-15)z$
$= 7z^3 + 12z^2 – 20z$
$(iii)$ $p-(p-q)-q-(q-p)$
$=p-p+q-q-q+p$ [On arranging like terms]
$=p-q$
$(iv)$ $3a-2b-ab-(a-b+ab)+3ab+b-a$
$=3a-2b-ab-a+b-ab+3ab+b-a$ [On arranging like terms]
$=3a-a-a-2b+b+b-ab-ab+3ab$
$=3a-2a-2ab+3ab$
$=a+ab$
$(v)$ $5x^2y-5x^2+3yx^2-3y^2+x^2-y^2+8xy^2-3y^2$
$=5x^2y+3x^2y+8xy^2-5x^{2}+x^{2}-3y^2-y^2-3y^2$ [On arranging like terms]
$=8x^2y+8xy^2-4x^2-7y^2$
$(vi)$. $(3y^2+5y-4)-(8y-y^2-4)$
$=3y^2+5y-4-8y+y^2+4$ [On arranging like terms]
$=4y^{2}-3y$
- Related Articles
- Solve \( 2 p^{2} q^{2}-3 p q+4,5+7 p q-3 p^{2} q^{2} \).
- Factorise \( 16(2 p-3 q)^{2}-4(2 p-3 q) \).
- Subtract \( 4 p^{2} q-3 p q+5 p q^{2}-8 p+7 q-10 \) from \( 18-3 p-11 q+5 p q-2 p q^{2}+5 p^{2} q \).
- Simplify the following.a) \( (l^{2}-m^{2})(2 l+m)-m^{3} \)b) \( (p+q+r)(p-q+r)+p q-q r \)
- Solve the following pairs of linear equations: (i) \( p x+q y=p-q \)$q x-p y=p+q$(ii) \( a x+b y=c \)$b x+a y=1+c$,b>(iii) \( \frac{x}{a}-\frac{y}{b}=0 \)$a x+b y=a^{2}+b^{2}$(iv) \( (a-b) x+(a+b) y=a^{2}-2 a b-b^{2} \)$(a+b)(x+y)=a^{2}+b^{2}$(v) \( 152 x-378 y=-74 \)$-378 x+152 y=-604$.
- If $p=-2,\ q=-1$ and $r=3$, find the value of $2 p^{2}-q^{2}+3 r^{2}$.
- Subtract the following algebraic identities:$3 p^{2} q-3$ from $9 p^{2}-9 p^{2} q$.
- Expand each of the following, using suitable identities:(i) \( (x+2 y+4 z)^{2} \)(ii) \( (2 x-y+z)^{2} \)(iii) \( (-2 x+3 y+2 z)^{2} \)(iv) \( (3 a-7 b-c)^{2} \)(v) \( (-2 x+5 y-3 z)^{2} \)(vi) \( \left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2} \)
- If $p=-2,\ q=-1$ and $r=3$, find the value of $p^{2}+q^{2}-r^{2}$.
- Simplify:(i) $2x^2 (x^3 - x) - 3x (x^4 + 2x) -2(x^4 - 3x^2)$(ii) $x^3y (x^2 - 2x) + 2xy (x^3 - x^4)$(iii) $3a^2 + 2 (a + 2) - 3a (2a + 1)$(iv) $x (x + 4) + 3x (2x^2 - 1) + 4x^2 + 4$(v) $a (b-c) - b (c - a) - c (a - b)$(vi) $a (b - c) + b (c - a) + c (a - b)$(vii) $4ab (a - b) - 6a^2 (b - b^2) -3b^2 (2a^2 - a) + 2ab (b-a)$(viii) $x^2 (x^2 + 1) - x^3 (x + 1) - x (x^3 - x)$(ix) $2a^2 + 3a (1 - 2a^3) + a (a + 1)$(x) $a^2 (2a - 1) + 3a + a^3 - 8$(xi) $\frac{3}{2}-x^2 (x^2 - 1) + \frac{1}{4}-x^2 (x^2 + x) - \frac{3}{4}x (x^3 - 1)$(xii) $a^2b (a - b^2) + ab^2 (4ab - 2a^2) - a^3b (1 - 2b)$(xiii) $a^2b (a^3 - a + 1) - ab (a^4 - 2a^2 + 2a) - b (a^3- a^2 -1)$.
- If two positive integers $p$ and $q$ can be expressed as $p = ab^2$, and $q = a^3b; a, b$ being prime numbers, then LCM $(p, q)$ is(A) $ab$(B) $a^2b^2$(C) $a^3b^2$(D) $a^3b^3$
- Find the following product.\( \left(\frac{4}{3} p q^{2}\right) \times\left(\frac{-1}{4} p^{2} r\right) \times\left(16 p^{2} q^{2} r^{2}\right) \)
- Express each of the following as a rational number of the form $\frac{p}{q}$, where $p$ and $q$ are integers and $q≠0$:(i) \( 2^{-3} \)(ii) \( (-4)^{-2} \)(iii) \( \frac{1}{3^{-2}} \)(iv) \( \left(\frac{1}{2}\right)^{-5} \)(v) \( \left(\frac{2}{3}\right)^{-2} \)
- Simplify each of the following.(a) \( \left(\frac{1}{2} a-b\right)\left(\frac{1}{2} a+b\right)\left(\frac{1}{4} a^{2}+b^{2}\right) \)(b) \( \left(\frac{p}{2}-\frac{q}{3}\right)\left(\frac{p}{2}+\frac{q}{3}\right)\left(\frac{p^{2}}{4}+\frac{q^{2}}{9}\right)\left(\frac{p^{4}}{16}+\frac{a^{4}}{81}\right) \)(c) \( \left(a^{2}+1-a\right)\left(a^{2}-1+a\right) \)(d) \( \left(4 b^{2}+2 b+1\right)\left(4 b^{2}-2 b-1\right) \)
- Identify the terms, their co-efficients for each of the following expressions.(i) $7x^2yz - 5xy$(ii) $x^2 + x + 1$(iii) $3x^2y^2 - 5x^2y^2z^2 + z^2 + 1$(iv) $9- ab + be-ca$(v) $\frac{a}{2}+\frac{b}{2}-ab$(vi) $2x - 0.3xy + 0.5y$
Kickstart Your Career
Get certified by completing the course
Get Started