- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- MS Excel
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP
- Physics
- Chemistry
- Biology
- Mathematics
- English
- Economics
- Psychology
- Social Studies
- Fashion Studies
- Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Solve the following pairs of linear equations:
(i) \( p x+q y=p-q \)
$q x-p y=p+q$
(ii) \( a x+b y=c \)
$b x+a y=1+c$
,b>(iii) \( \frac{x}{a}-\frac{y}{b}=0 \)
$a x+b y=a^{2}+b^{2}$
(iv) \( (a-b) x+(a+b) y=a^{2}-2 a b-b^{2} \)
$(a+b)(x+y)=a^{2}+b^{2}$
(v) \( 152 x-378 y=-74 \)
$-378 x+152 y=-604$.
To do:
We have to solve the given pairs of linear equations.
Solution:
(i) $px + qy = p – q$..…(i)
$qx – py = p + q$.…(ii)
Multiplying equation (i) by $p$ and equation (ii) by $q$ and adding the results, we get,
$x(p^2 + q^2) = p(p – q) + q(p + q)$
$x=\frac{p(p-q)}{p^{2}+q^{2}}+\frac{q(p+c_{5}}{p^{2}+q}$
$x=\frac{p^{2}-p q+q p+q^{2}}{p^{2}+q^{2}}$
$x=\frac{p^{2}+q^{2}}{p^{2}+q^{2}}$
$x=1$
Substituting $x=1$ in equation (ii), we get,
$q(1)-p y=p+q$
$q-p y=p+q$
$y=\frac{-p}{p}$
$y=-1$
(ii) $ax + by = c$....…(i)
$bx – ay = 1 + c$.....…(ii)
Multiplying equation (i) by $b$ and equation (ii) by $a$, we get,
$abx + b^2y = cb$....…(iii)
$abx + a^2y = a(1+ c)$…....(iv)
Subtracting (iii) from (iv), we get
$(b^{2}-a^{2}) y=c b-a-a c$
$y=\frac{c(b-a)-a}{b^{2}-a^{2}}$
$y=\frac{c(a-b)+a}{a^{2}-b^{2}}$
$b x +a[\frac{c(a-b)+a}{a^{2}-b^{2}}]=1+c$
$b x=1+c-a[\frac{c(a-b)+a}{a^{2}-b^{2}}]$
$b x=1+c-a[\frac{c a-c b+a}{a^{2}-b^{2}}]$
$bx=\frac{a^{2}-b^{2}+a^{2} c-b^{2} c-a^{2} c+a b c-a^{2}}{a^{2}-b^{2}}$
$bx=\frac{-b^{2}-b^{2} c+a b c}{a^{2}-b^{2}}$
$bx=\frac{b(-b-c b+a c^{2}}{a^{2}-b^{2}}$
$x=\frac{-b-c b+a c}{a^{2}-b^{2}}$
$x=\frac{c(a-b)-b}{a^{2}-b^{2}}$
$x=\frac{c(a-b)-b}{a^{2}-b^{2}}$
Therefore,
$x=\frac{c(a-b)-b}{a^{2}-b^{2}}$ and $y=\frac{c(a-b)+a}{a^{2}-b^{2}}$ is the required solution.
(iii) The given equations can be written as,
$bx - ay = 0$.....…(i)
$ax + by = a^2 + b^2$....…(ii)
Multiplying equation (i) by $b$ and equation (ii) by $a$, we get,
$b^2x - aby = 0$.....….(iii)
$a^2x + aby = a(a^2 + b^2)$…......(iv)
Adding equations (iii) and equation (iv), we get,
$(a^2 + b^2)x = a (a^2+ b^2)$
$x=\frac{a(a^{2}+b^{2})}{a^{2}+b^{2}}$
$x=a$
Substituting $x=a$ in equation (ii), we get,
$a(a)+b y=a^{2}+b^{2}$
$a^2+b y =a^{2}+b^{2}$
$y=\frac{b^2}{b}$
$y=b$
(iv) The given equations can be written as,
\( (a-b) x+(a+b) y=a^{2}-2 a b-b^{2} \).....…(i)
$(a+b)(x+y)=a^{2}+b^{2}$....…(ii)
Subtracting (ii) from (i), we get, we get,
$(a-b)x - (a + b)x = (a^2 - 2ab - b^2) - (a^2 +b^2)$
$x(a - b - a - b) = a^2 - 2ab - b^2 - a^2 - b^2$
$-2bx = -2ab - 2b^2$
$2bx = 2b^2 + 2ab$
$x=\frac{b(a+b)}{b}$
$x=a+b$
Substituting $x=a+b$ in (i), we get,
$(a-b)(a+b)+(a+b) y=a^{2}-2 a b-b^{2}$
$a^{2}-b^{2}+(a+b) y=a^{2}-2 a b-b^{2}$
$(a+b) y =a^{2}-2 a b-b^{2}-a^{2}+b^{2}$
$y=\frac{-2 a b}{a+b}$
(v) The given equations can be written as,
\( 152 x-378 y=-74 \)
$2(76x-189y)=2(-37)$
$76x-189y=-37$.....…(i)
$-378 x+152 y=-604$
$2(-189x+76y)=2(-302)$
$-189x+76y=-302$....…(ii)
Multiplying (i) by 76 and (ii) by 189, we get,
$5776x - 14364y = -2812$...…(iii)
$-35721x + 14364y = -57078$....…(iv)
Adding equations (iii) and (iv), we get,
$5776x - 35721x = -2812 - 57078$
$- 29945x = -59890$
$x = 2$
Substituting $x = 2$ in equation (i), we get,
$76(2)- 189y = -37$
$152 - 189y = -37$
$-189y = -189$
$y = 1$
Therefore, $x = 2$ and $y = 1$ is the required solution.