TensorFlow - 导出



这里,我们重点关注 TensorFlow 中的 MetaGraph 形成。这将帮助我们了解 TensorFlow 中的导出模块。MetaGraph 包含基本信息,这些信息是训练、执行评估或对以前训练过的图运行推理所必需的。

以下是相同的代码片段:-

def export_meta_graph(filename = None, collection_list = None, as_text = False): 
   """this code writes `MetaGraphDef` to save_path/filename. 
   
   Arguments: 
   filename: Optional meta_graph filename including the path. collection_list: 
      List of string keys to collect. as_text: If `True`, 
      writes the meta_graph as an ASCII proto. 
   
   Returns: 
   A `MetaGraphDef` proto. """

下面提到了相同内容的典型使用模型:-

# Build the model ... 
with tf.Session() as sess: 
   # Use the model ... 
# Export the model to /tmp/my-model.meta. 
meta_graph_def = tf.train.export_meta_graph(filename = '/tmp/my-model.meta')
广告