以下方程组是否表示一对重合直线?请说明理由。
\( 3 x+\frac{1}{7} y=3 \)\( 7 x+3 y=7 \)
要找到
我们必须找到给定的方程组对是否表示一对重合直线。
解决方案
我们知道,
重合直线的条件是,
$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$
(i) \( 3 x+\frac{1}{7} y=3 \)
$7(3x)+7(\frac{1}{7}y)=7(3)$
$21x+y-21=0$
\( 7 x+3 y-7=0 \)
这里,
$a_1=21, b_1=1, c_1=-21$
$a_2=7, b_2=3, c_2=-7$
所以,
$\frac{a_1}{a_2}=\frac{21}{7}=3$
$\frac{b_1}{b_2}=\frac{1}{3}$
$\frac{c_1}{c_2}=\frac{-21}{-7}=3$
这里,
$\frac{a_1}{a_2}≠\frac{b_1}{b_2}$
因此,给定的线性方程组有唯一的解。
(ii) \( -2 x-3 y-1=0 \)
\( 6 y+4 x+2=0 \)
这里,
$a_1=-2, b_1=-3, c_1=-1$
$a_2=4, b_2=6, c_2=2$
所以,
$\frac{a_1}{a_2}=\frac{-2}{4}=\frac{-1}{2}$
$\frac{b_1}{b_2}=\frac{-3}{6}=\frac{-1}{2}$
$\frac{c_1}{c_2}=\frac{-1}{2}$
这里,
$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$
因此,给定的线性方程组表示重合直线。
(iii) \( \frac{x}{2}+y+\frac{2}{5}=0 \)
$10(\frac{x}{2})+10(y)+10(\frac{2}{5})=0$
$5x+10y+4=0$
\( 4 x+8 y+\frac{5}{16}=0 \)
$16(4x)+16(8y)+16(\frac{5}{16})=0$
$64x+128y+5=0$
这里,
$a_1=5, b_1=10, c_1=4$
$a_2=64, b_2=128, c_2=5$
所以,
$\frac{a_1}{a_2}=\frac{5}{64}$
$\frac{b_1}{b_2}=\frac{10}{128}=\frac{5}{64}$
$\frac{c_1}{c_2}=\frac{4}{5}$
这里,
$\frac{a_1}{a_2}=\frac{b_1}{b_2}≠\frac{c_1}{c_2}$
因此,给定的线性方程组无解。