以下线性方程组是否相容?请说明理由。
\( -3 x-4 y=12 \)
\( 4 y+3 x=12 \)
要找到
我们必须确定给定的线性方程组对是否相容。
解决方案
我们知道,
线性方程组相容的条件是:
$\frac{a_1}{a_2}≠\frac{b_1}{b_2}$ [对于唯一解]
$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$ [对于无限多个解]
(i) \( -3 x-4 y-12=0 \)
\( 4 y+3 x-12=0 \)
这里,
$a_1=-3, b_1=-4, c_1=-12$
$a_2=4, b_2=3, c_2=-12$
因此,
$\frac{a_1}{a_2}=\frac{-3}{4}$
$\frac{b_1}{b_2}=\frac{-4}{3}$
$\frac{c_1}{c_2}=\frac{-12}{-12}=1$
这里,
$\frac{a_1}{a_2}=\frac{b_1}{b_2}≠\frac{c_1}{c_2}$
因此,给定的线性方程组对无解,因此不相容。
(ii) \( \frac{3}{5} x-y=\frac{1}{2} \)
$10(\frac{3}{5}x)-10(y)=10(\frac{1}{2})$
$6x-10y-5=0$
\( \frac{1}{5} x-3 y=\frac{1}{6} \)
$30(\frac{1}{5}x)-30(3y)=30(\frac{1}{6})$
$6x-90y-5=0$
这里,
$a_1=6, b_1=-10, c_1=-5$
$a_2=6, b_2=-90, c_2=-5$
因此,
$\frac{a_1}{a_2}=\frac{1}{1}=1$
$\frac{b_1}{b_2}=\frac{-10}{-90}=\frac{1}{9}$
$\frac{c_1}{c_2}=\frac{-5}{-5}=1$
这里,
$\frac{a_1}{a_2}≠\frac{b_1}{b_2}$
因此,给定的线性方程组对有唯一解,因此相容。
(iii) \( 2 a x+b y-a=0 \)
\( 4 a x+2 b y-2 a=0; a, b ≠ 0 \)
这里,
$a_1=2a, b_1=b, c_1=-a$
$a_2=4a, b_2=2b, c_2=-2a$
因此,
$\frac{a_1}{a_2}=\frac{2a}{4a}=\frac{1}{2}$
$\frac{b_1}{b_2}=\frac{b}{2b}=\frac{1}{2}$
$\frac{c_1}{c_2}=\frac{-a}{-2a}=\frac{1}{2}$
这里,
$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$
因此,给定的线性方程组对有无限多个解,因此相容。
(iv) \( x+3 y-11=0 \)
\( 4 x+12 y-22=0 \)
这里,
$a_1=1, b_1=3, c_1=-11$
$a_2=4, b_2=12, c_2=-22$
因此,
$\frac{a_1}{a_2}=\frac{1}{4}$
$\frac{b_1}{b_2}=\frac{3}{12}=\frac{1}{4}$
$\frac{c_1}{c_2}=\frac{-11}{-22}=\frac{1}{2}$
这里,
$\frac{a_1}{a_2}=\frac{b_1}{b_2}≠\frac{c_1}{c_2}$
因此,给定的线性方程组对无解,因此不相容。