求和
\( \frac{a-b}{a+b}+\frac{3 a-2 b}{a+b}+\frac{5 a-3 b}{a+b}+\ldots \) 到第 11 项。
已知
\( \frac{a-b}{a+b}+\frac{3 a-2 b}{a+b}+\frac{5 a-3 b}{a+b}+\ldots \)
需要做的事情
我们需要求出给定数列前 11 项的和。
解答
在给定的数列中,
第一项 $a_1=\frac{a-b}{a+b}$
公差 $d=\frac{3 a-2 b}{a+b}-\frac{a-b}{a+b}$
$=\frac{2 a-b}{a+b}$
等差数列前 $n$ 项和 $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{n} =\frac{n}{2}[2 \frac{(a-b)}{(a+b)}+(n-1) \frac{(2 a-b)}{(a+b)}]$
$=\frac{n}{2}[\frac{2 a-2 b+2 a n-2 a-b n+b}{a+b}]$
$=\frac{n}{2}(\frac{2 a n-b n-b}{a+b})$
$S_{11}=\frac{11}{2}[\frac{2 a(11)-b(11)-b}{a+b}]$
$=\frac{11}{2}(\frac{22 a-12 b}{a+b})$
$=\frac{11(11 a-6 b)}{a+b}$
- 相关文章
- 如果 a = $\frac{7}{2}$ 且 b = $-\frac{5}{4}$,求 $\frac{a\ +\ b}{a\ -\ b}$ 的值。
- 计算以下乘积$(\frac{-10}{3}a^{2}b^{2})(\frac{6}{5}a^{3}b^{2})$
- 如果 $\frac{1}{b} \div \frac{b}{a} = \frac{a^2}{b}$,其中 a、b 不等于 0,则求 $\frac{\frac{a}{(\frac{1}{b})} - 1}{\frac{a}{b}}$ 的值。
- 化简以下表达式:$\frac{a^3-b^3}{a^2+ab+b^2}$
- 已知 $sin\ \theta = \frac{a}{b}$,则 $cos\ \theta$ 等于(A) \( \frac{b}{\sqrt{b^{2}-a^{2}}} \)(B) \( \frac{b}{a} \)(C) \( \frac{\sqrt{b^{2}-a^{2}}}{b} \)(D) \( \frac{a}{\sqrt{b^{2}-a^{2}}} \)
- 化简以下乘积:\( (\frac{1}{2} a-3 b)(3 b+\frac{1}{2} a)(\frac{1}{4} a^{2}+9 b^{2}) \)
- 求以下等差数列的和:\( a+b, a-b, a-3 b, \ldots \) 到第 22 项。
- 化简以下表达式:\( \frac{4 a b^{2}\left(-5 a b^{3}\right)}{10 a^{2} b^{2}} \)
- 求 a 和 b 的值。$\left(\frac{a}{2} \ +\ 3,\ b\ -\ 1\right) \ =\ (5,\ -3)$
- 证明:\( \left(\frac{3^{a}}{3^{b}}\right)^{a+b}\left(\frac{3^{b}}{3^{c}}\right)^{b+c}\left(\frac{3^{c}}{3^{a}}\right)^{c+a}=1 \)
- 因式分解以下每个表达式:(i) \( 8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2} \)(ii) \( 8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2} \)(iii) \( 27-125 a^{3}-135 a+225 a^{2} \)(iv) \( 64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2} \)(v) \( 27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p \)
- 如果 \( \frac{a}{b}=\left(\frac{3}{5}\right)^{18} \p\left(\frac{3}{5}\right)^{16}, \) 求 \( \left(\frac{a}{b}\right)^{2} \) 的值。
- 证明:\( \left(\frac{x^{a^{2}+b^{2}}}{x^{a b}}\right)^{a+b}\left(\frac{x^{b^{2}+c^{2}}}{x^{b c}}\right)^{b+c}\left(\frac{x^{c^{2}+a^{2}}}{x^{a c}}\right)^{a+c}= x^{2\left(a^{3}+b^{3}+c^{3}\right)} \)
- 将以下代数表达式相加(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- 证明 \( \frac{a \sqrt{b}-b \sqrt{a}}{a \sqrt{b}+b \sqrt{a}}=\frac{1}{a-b}(a+b-2 \sqrt{a b}) \)