如果由\( 3 x+2 k y=2 \)和\( 2 x+5 y+1=0 \)给出的两条直线平行,则\( k \)的值为
(A) \( \frac{-5}{4} \)
(B) \( \frac{2}{5} \)
(C) \( \frac{15}{4} \)
(D) \( \frac{3}{2} \)
已知
由\( 3 x+2 k y=2 \)和\( 2 x+5 y+1=0 \)给出的两条直线平行。
要求
我们必须找到\( k \)的值。
解答
我们知道,
平行线的条件是:
$\frac{a_1}{a_2}=\frac{b_1}{b_2}≠\frac{c_1}{c_2}$
\( 3 x+2 k y=2 \)和\( 2 x+5 y+1=0 \)平行。
这里,
$a_1=3, b_1=2k, c_1=-2$
$a_2=2, b_2=5, c_2=1$
因此,
$\frac{3}{2}=\frac{2k}{5}≠\frac{-2}{1}$
$\frac{3}{2}=\frac{2k}{5}$
$2(2k)=5(3)$
$4k=15$
$k=\frac{15}{4}$
k的值为$\frac{15}{4}$。
- 相关文章
- 添加下列代数表达式:(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- 减法:(i) 从$12xy$中减去$-5xy$(ii) 从$-7a^2$中减去$2a^2$(iii) 从\( 3 a-5 b \)中减去\( 2 a-b \)(iv) 从\( 4 x^{3}+x^{2}+x+6 \)中减去\( 2 x^{3}-4 x^{2}+3 x+5 \)(v) 从\( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \)中减去\( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \)(vi) 从\( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \)中减去\( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \)(vii) 从\( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \)中减去\( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \)(viii) 从\( \frac{3}{5} b c-\frac{4}{5} a c \)中减去\( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \)
- 减去:(i) 从\( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+ \) \( \frac{3}{5} x+\frac{1}{4} \)中减去\( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \)(ii) 从\( \frac{1}{3} a^{3}-\frac{3}{4} a^{2}- \) \( \frac{5}{2} \)中减去\( \frac{5 a^{2}}{2}+\frac{3 a^{3}}{2}+\frac{a}{3}-\frac{6}{5} \)(iii) 从\( \frac{7}{2}-\frac{x}{3}- \) \( \frac{x^{2}}{5} \)中减去\( \frac{7}{4} x^{3}+\frac{3}{5} x^{2}+\frac{1}{2} x+\frac{9}{2} \)(iv) 从\( \frac{1}{3}-\frac{5}{3} y^{2} \)中减去\( \frac{y^{3}}{3}+\frac{7}{3} y^{2}+\frac{1}{2} y+\frac{1}{2} \)(v) 从\( \frac{3}{2} a b-\frac{7}{4} a c- \) \( \frac{5}{6} b c \)中减去\( \frac{2}{3} a c-\frac{5}{7} a b+\frac{2}{3} b c \)
- (i) \( x^{2}-3 x+5-\frac{1}{2}\left(3 x^{2}-5 x+7\right) \)(ii) \( [5-3 x+2 y-(2 x-y)]-(3 x-7 y+9) \)(iii) \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+ \) \( \frac{1}{2} x y \)(iv) \( \left(\frac{1}{3} y^{2}-\frac{4}{7} y+11\right)-\left(\frac{1}{7} y-3+2 y^{2}\right)- \) \( \left(\frac{2}{7} y-\frac{2}{3} y^{2}+2\right) \)(v) \( -\frac{1}{2} a^{2} b^{2} c+\frac{1}{3} a b^{2} c-\frac{1}{4} a b c^{2}-\frac{1}{5} c b^{2} a^{2}+ \) \( \frac{1}{6} c b^{2} a+\frac{1}{7} c^{2} a b+\frac{1}{8} c a^{2} b \).
- 求 $(x +y) \div (x - y)$ 的值,如果:(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- 通过将下列方程组简化为线性方程组来求解:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \)(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- 如果点$( \frac{2}{5},\ \frac{1}{3}),\ ( \frac{1}{2},\ k)$和$( \frac{4}{5},\ 0)$共线,则求$k$的值。
- 从\( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+\frac{3}{5} x+\frac{1}{4} \)中减去\( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \)
- 求下列二项式的乘积:(i) \( (2 x+y)(2 x+y) \)(ii) \( (a+2 b)(a-2 b) \)(iii) \( \left(a^{2}+b c\right)\left(a^{2}-b c\right) \)(iv) \( \left(\frac{4 x}{5}-\frac{3 y}{4}\right)\left(\frac{4 x}{5}+\frac{3 y}{4}\right) \)(v) \( \left(2 x+\frac{3}{y}\right)\left(2 x-\frac{3}{y}\right) \)(vi) \( \left(2 a^{3}+b^{3}\right)\left(2 a^{3}-b^{3}\right) \)(vii) \( \left(x^{4}+\frac{2}{x^{2}}\right)\left(x^{4}-\frac{2}{x^{2}}\right) \)(viii) \( \left(x^{3}+\frac{1}{x^{3}}\right)\left(x^{3}-\frac{1}{x^{3}}\right) \).
- 验证有理数加法的结合律,即$(x + y) + z = x + (y + z)$,当:(i) \( x=\frac{1}{2}, y=\frac{2}{3}, z=-\frac{1}{5} \)(ii) \( x=\frac{-2}{5}, y=\frac{4}{3}, z=\frac{-7}{10} \)(iii) \( x=\frac{-7}{11}, y=\frac{2}{-5}, z=\frac{-3}{22} \)(iv) \( x=-2, y=\frac{3}{5}, z=\frac{-4}{3} \)
- 计算\( \left(3 x^{2} y-5 x y^{2}\right) \)乘以\( \left(\frac{1}{5} x^{2}+\frac{1}{3} y^{2}\right) \)
- 计算:(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)
- 求解:$\frac{3 x}{2}-\frac{5 y}{3}=-2$$\frac{x}{3}+\frac{y}{2}=\frac{13}{6}$
- 化简:\( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y \).
- 计算$-\frac{2}{5} x^{2} y^{2}(\frac{3 x}{2}-y^{2})$的乘积。