Loading [MathJax]/jax/output/HTML-CSS/jax.js
在等差数列中,如果Sn=3n2+5n 且 ak=164,求k的值。
已知
在等差数列中,
Sn=3n2+5n 且
ak=164求解
我们需要求出k。
解法
设a为首项,d为公差。
令n=1, 2,求a和d的值
S₁=3(1)²+5(1)
=3+5
=8
⇒ a₁=a=8
S₂=3(2)²+5(2)
=12+10
=22
第二项 a₂=S₂-S₁
=22−8
=14
因此,
d=a₂-a₁ = 14-8=6
=14−8
=6
我们知道,
第n项 aₙ=a+(n-1)d
aₖ=a+(k-1)d
164=8+(k-1)6
164-8=(k-1)6
156=(k-1)6
k-1=26
k=26+1
k=27
因此,k=27。
- 相关文章
- 如果an=3−4n,证明a1,a2,a3,…构成一个等差数列。也求S20。
- 在一个等差数列中,如果 S5+S7=167 且 S10=235,则求出这个等差数列,其中 Sn 表示其前n项的和。
- 如果Sn 表示等差数列的前 n 项的和,证明S12=3(S8−S4)
- 如果 6370=2m.5n.7k.13p,则求 m+n+k+p。
- 求出下列数列中指定的项,其第n项为:an=(n−1)(2−n)(3+n);a1,a2,a3
- 用C++求和数列 Kn + ( K(n-1) * (K-1)1 ) + ( K(n-2) * (K-1)2 ) + ... (K-1)n
- 求出下列数列中指定的项,其第n项为:an=n(n−1)(n−2);a5 和 a8
- 求出下列数列的接下来的五项,其定义为:a1=a2=2,an=an−1−3,n>2
- 如果 81×3n=35,求n的值。
- 求出下列数列中指定的项,其第n项为:an=3n−24n+5;a7 和 a8
- 求出下列数列中指定的项,其第n项为:an=(−1)nn;a3,a5,a8
- 当 52n×53=59 时,求 n 的值。
- 在一个等差数列中:(i) 已知a=5,d=3,an=50,求n 和 Sn。(ii) 已知a=7,a13=35,求d 和 S13。(iii) 已知a12=37,d=3,求a 和 S12。(iv) 已知a3=15,S10=125,求d 和 a10(v) 已知d=5,S9=75,求a 和 a9。(vi) 已知a=2,d=8,Sn=90,求n 和 an(vii) 已知a=8,an=62,Sn=210,求n 和 d。(viii) 已知an=4,d=2,Sn=−14,求n 和 a。(ix) 已知a=3,n=8,S=192,求d。(x) 已知l=28,S=144,共有9项。求a。
- 用C++求 (n¹ + n² + n³ + n⁴) mod 5 的值。
- 如果 1+2+3+........+n=78,则求n的值。