因式分解下列表达式:8x^3 - 125y^3 + 180xy + 216


已知

$8x^3 - 125y^3 + 180xy + 216$

求解

我们需要分解给定的表达式。

我们知道:

$a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)$

因此:

$8x^3 - 125y^3 + 180xy + 216 = (2x)^3 + (-5y)^3 + (6)^3 - 3 \times 2x \times (-5y) \times 6$

$= (2x - 5y + 6) [(2x)^2 + (-5y)^2 + (6)^2 - 2x \times (-5y) - (-5y) \times 6 - 6 \times 2x]$

$= (2x -5y + 6) (4x^2 + 25y^2 + 36 + 10xy + 30y - 12x)$

所以 8x^3 - 125y^3 + 180xy + 216 = (2x -5y + 6) (4x^2 + 25y^2 + 36 + 10xy + 30y - 12x)。

更新于:2022年10月10日

248 次浏览

开启你的 职业生涯

通过完成此课程获得认证

开始学习
广告