分解因式:\( 21 x^{2}-2 x+\frac{1}{21} \)
已知
\( 21 x^{2}-2 x+\frac{1}{21} \)
待做
我们必须对给定的表达式进行分解因式。
解答
$21 x^{2}-2 x+\frac{1}{21}=[\sqrt{21} x]^{2}-2 \times \sqrt{21}x \times \sqrt{\frac{1}{21}}+(\sqrt{\frac{1}{21}})^{2}$
$=[\sqrt{21} x-\frac{1}{\sqrt{21}}]^{2}$
因此,\(21 x^{2}-2 x+\frac{1}{21}=[\sqrt{21} x-\frac{1}{\sqrt{21}}]^{2}\)。
- 相关文章
- 使用分解因式法求解以下二次方程的根:\( 21 x^{2}-2 x+\frac{1}{21}=0 \)
- 分解因式:\( 2 x^{2}-\frac{5}{6} x+\frac{1}{12} \)
- 分解因式:\( \left(x^{2}+\frac{1}{x^{2}}\right)-4\left(x+\frac{1}{x}\right)+6 \)
- 分解因式:\( \frac{8}{27} x^{3}+1+\frac{4}{3} x^{2}+2 x \)
- 分解因式:\( x^{2}+\frac{12}{35} x+\frac{1}{35} \)
- 解方程:i) $\frac{x}{2} \ -\ \frac{1}{5} \ =\ \frac{x}{3} \ +\ \frac{1}{4}$ii) $\frac{n}{2} \ -\ \frac{3n}{4} \ +\ \frac{5n}{6} \ =\ 21$
- $\frac{x-1}{2}+\frac{2 x-1}{4}=\frac{x-1}{3}-\frac{2 x-1}{6}$.
- 分解因式 $(x+1) (x+2) (x+3) (x+6) - 3x^2$.
- 求解 x:$\frac{1}{( x-1)( x-2)} +\frac{1}{( x-2)( x-3)} =\frac{2}{3} \ ,\ x\neq 1,2,3$
- 求解 x:$\frac{1}{x+1} +\frac{2}{x+2} =\frac{4}{x+4} ;\ x\neq -1,\ -2,\ -4$
- 求解 $x$:$\frac{1}{x}+\frac{2}{2x-3}=\frac{1}{x-2}, x≠0, \frac{3}{2}, 2$
- 化简:\( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y \).
- 因式分解:\( a^{2} x^{2}+\left(a x^{2}+1\right) x+a \)
- 通过因式分解求解下列二次方程:$\frac{x+1}{x-1}+\frac{x-2}{x+2}=4-\frac{2x+3}{x-2}, x ≠ 1, -2, 2$
- 如果 $(\frac{8}{3})^{-5} \times (\frac{16}{21})^{5}=(\frac{2}{7})^{x}$,求 $x^{3}$。