解方程
i) $\frac{x}{2} \ -\ \frac{1}{5} \ =\ \frac{x}{3} \ +\ \frac{1}{4}$
以及
ii) $\frac{n}{2} \ -\ \frac{3n}{4} \ +\ \frac{5n}{6} \ =\ 21$
i)
$ \begin{array}{l}
$\frac{x}{2} \ -\ \frac{1}{5} \ =\ \frac{x}{3} \ +\ \frac{1}{4}$
\\
\\
\\
$\frac{x}{2} \ -\ \frac{x}{3} \ =\ \frac{1}{4} \ +\ \frac{1}{5}$
\\
\\
\\
$\frac{3x\ -\ 2x}{6} \ =\ \frac{5\ +\ 4}{20}$
\\
\\
\\
$\frac{x}{6} \ =\ \frac{9}{20}$
\\
\\
\\
$x\ =\ \frac{9\ \times \ 6}{20}$
\\
\\
$x\ =\ \frac{9\ \times \ 3}{10}$
\\
\\
$\mathbf{x\ =\ \frac{27}{10}}$
$\end{array}$
ii)
$ \begin{array}{l}
$\frac{n}{2} \ -\ \frac{3n}{4} \ +\ \frac{5n}{6} \ =\ 21$
\\
\\
\\
$\frac{n( 6) \ -\ 3n( 3) \ +\ 5n( 2)}{12} \ =\ 21$
\\
\\
\\
$\frac{6n\ -\ 9n\ +\ 10n}{12} \ =\ 21$
\\
\\
\\
$\frac{7n}{12} \ =\ 21$
\\
\\
\\
$n\ =\ 21\ \times \ \frac{12}{7}$
\\
\\
\\
$n\ =\ 3\ \times \ 12$
\\
\\
$\mathbf{n\ =\ 36}$
$\end{array}$
- 相关文章
- 解下列线性方程:\( \frac{x}{2}-\frac{1}{5}=\frac{x}{3}+\frac{1}{4} \).
- 从\( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+\frac{3}{5} x+\frac{1}{4} \)中减去:\( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \)
- $\frac{x-1}{2}+\frac{2 x-1}{4}=\frac{x-1}{3}-\frac{2 x-1}{6}$。
- 解(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)
- 解:\( \frac{x}{2}-\frac{1}{4}\left(x-\frac{1}{3}\right)=\frac{1}{6}(x+1)+\frac{1}{12} \)
- 减去:(i) \( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \) 从 \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+ \) \( \frac{3}{5} x+\frac{1}{4} \)(ii) \( \frac{5 a^{2}}{2}+\frac{3 a^{3}}{2}+\frac{a}{3}-\frac{6}{5} \) 从 \( \frac{1}{3} a^{3}-\frac{3}{4} a^{2}- \) \( \frac{5}{2} \)(iii) \( \frac{7}{4} x^{3}+\frac{3}{5} x^{2}+\frac{1}{2} x+\frac{9}{2} \) 从 \( \frac{7}{2}-\frac{x}{3}- \) \( \frac{x^{2}}{5} \)(iv) \( \frac{y^{3}}{3}+\frac{7}{3} y^{2}+\frac{1}{2} y+\frac{1}{2} \) 从 \( \frac{1}{3}-\frac{5}{3} y^{2} \)(v) \( \frac{2}{3} a c-\frac{5}{7} a b+\frac{2}{3} b c \) 从 \( \frac{3}{2} a b-\frac{7}{4} a c- \) \( \frac{5}{6} b c \)
- 用因式分解法解下列二次方程:$\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}+\frac{1}{(x-3)(x-4)}=\frac{1}{6}$
- 解下列表达式:$\frac{X}{2}-\frac{1}{4}=\frac{X}{3}+\frac{1}{2}$
- 解 \( \frac{2 x+1}{3 x-2}=1\frac{1}{4} \).
- 解关于 $x$ 的方程:$\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3}, x≠2, 4$
- 求 $(x +y) \div (x - y)$。如果,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- 解关于 x 的方程:$\frac{1}{x+1} +\frac{2}{x+2} =\frac{4}{x+4} ;\ x\neq -1,\ -2,\ -4$
- 将下列方程组简化为线性方程组求解:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- 解关于 x 的方程: $\frac{1}{x+1} +\frac{3}{5x+1} =\frac{5}{x+4} ,\ x\neq 1,\ -\frac{1}{5} ,\ -4$
- 用因式分解法解下列二次方程: $\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3}, x≠2, 4$