解下列线性方程。
\( \frac{x}{2}-\frac{1}{5}=\frac{x}{3}+\frac{1}{4} \).
已知
$\frac{x}{2}-\frac{1}{5}=\frac{x}{3}+\frac{1}{4}$。
解题步骤
我们需要解这个线性方程。
解:
$\frac{x}{2} - \frac{1}{5} = \frac{x}{3}+\frac{1}{4}$
这意味着:
$\frac{x}{2} -\frac{x}{3} =\frac{1}{4} +\frac{1}{5}$
$\frac{3\times x-2\times x}{6}=\frac{1\times5+1\times4}{20}$
$\frac{3x-2x}{6}=\frac{5+4}{20}$
$\frac{x}{6}=\frac{9}{20}$
$x=6\times\frac{9}{20}$
$x=\frac{27}{10}$
$x$的值是$\frac{27}{10}$。
- 相关文章
- 用因式分解法解下列二次方程:$\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}+\frac{1}{(x-3)(x-4)}=\frac{1}{6}$
- 解下列表达式:$\frac{X}{2}-\frac{1}{4}=\frac{X}{3}+\frac{1}{2}$
- 用因式分解法解下列二次方程:$\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3}, x≠2, 4$
- 解有理方程 $\frac{2}{(x-3)} + \frac{1}{x} = \frac{(x-1)}{(x-3)}$。
- 解方程 $\frac{2x}{5} - \frac{3}{5} = \frac{x}{2}+1$。
- 解下列线性方程。\( \frac{x-5}{3}=\frac{x-3}{5} \).
- 解方程 i) $\frac{x}{2} \ -\ \frac{1}{5} \ =\ \frac{x}{3} \ +\ \frac{1}{4}$ 和 ii) $\frac{n}{2} \ -\ \frac{3n}{4} \ +\ \frac{5n}{6} \ =\ 21$
- 解关于x的方程:$\frac{1}{x+1} +\frac{3}{5x+1} =\frac{5}{x+4} ,\ x\neq 1,\ -\frac{1}{5} ,\ -4$
- 用因式分解法解下列二次方程:$\frac{3}{x+1}-\frac{1}{2}=\frac{2}{3x-1}, x ≠-1, \frac{1}{3}$
- 用因式分解法解下列二次方程:$\frac{3}{x+1}+\frac{4}{x-1}=\frac{29}{4x-1}, x ≠1, -1, \frac{1}{4}$
- 解:\( \frac{x+5}{2}=1+\frac{2 x-1}{3} \).
- 解 \( \frac{2 x+1}{3 x-2}=1\frac{1}{4} \).
- 解下列方程:$\frac{4 x-5}{8 x - 1}$=$ \frac{x+2}{2 x+1}$
- 用因式分解法解下列二次方程:$\frac{x-1}{2x+1}+\frac{2x+1}{x-1}=\frac{5}{2}, x ≠-\frac{1}{2},1$
- 用因式分解法解下列二次方程:$\frac{x+1}{x-1}+\frac{x-2}{x+2}=4-\frac{2x+3}{x-2}, x ≠ 1, -2, 2$