利用恒等式求下列各式的平方
(i). (b−7)2
(ii). (xy+3z)2
(iii). (6x2−5y)2
(iv). (23m+32n)2
(v). (0.4p−0.5q)2
(vi). (2xy+5y)2
解答
(i). (b−7)2
=b2+72−2(b)(7)
=b2+49−14b ∵[(a−b)2=a2+b2−2ab]
(ii). (xy+3z)2
=(xy)2+(3z)2+2(xy)(3z)
=x2y2+9z2+6xyz ∵[(a+b)2=a2+b2+2ab]
(iii). (6x−5y)2
=(6x)2+(5y)2−2(6x)(5y)
=36x2+25y2−60xy ∵[(a−b)2=a2+b2−2ab]
(iv). (23m+32n)2
=(23m)2+(32n)2+2(23m)(32n)
=49m2+94n2+2mn ∵[(a+b)2=a2+b2+2ab]
(v). (0.4p−0.5q)2
=(0.4p)2+(0.5q)2−2(0.4p)(0.5q)
=0.16p2+0.25q2−4pq ∵[(a−b)2=a2+b2−2ab]
- 相关文章
- 利用适当的恒等式展开下列各式:(i) (x+2y+4z)2(ii) (2x−y+z)2(iii) (−2x+3y+2z)2(iv) (3a−7b−c)2(v) (−2x+5y−3z)2(vi) [14a−12b+1]2
- 将下列代数式相加(i) 3a2b,−4a2b,9a2b(ii) 23a,35a,−65a(iii) 4xy2−7x2y,12x2y−6xy2,−3x2y+5xy2(iv) 32a−54b+25c,23a−72b+72c,53a+ 52b−54c(v) 112xy+125y+137x,−112y−125x−137xy(vi) 72x3−12x2+53,32x3+74x2−x+13 32x2−52x−2
- 计算:(i) 3−25(ii) 4+78(iii) 35+27(iv) 911−415(v) 710+25+32(vi) 223+312(vii) 812−358
- 求差:(i) 从 12xy 中减去 −5xy(ii) 从 −7a2 中减去 2a2(iii) 从 3a−5b 中减去 2a−b(iv) 从 4x3+x2+x+6 中减去 2x3−4x2+3x+5(v) 从 13y3+57y2+y−2 中减去 23y3−27y2−5(vi) 从 23x+32y−43z 中减去 32x−54y−72z(vii) 从 23x2y+32xy2− 13xy 中减去 x2y−45xy2+43xy(viii) 从 35bc−45ac 中减去 ab7−353bc+65ac
- 化简:(i) −32+54−74(ii) 53−76+−23(iii) 54−76−−23(iv) −25−−310−−47(v) 56+−25−−215(vi) 38−−29+−536
- 计算:(i) 25÷12(ii) 49÷23(iii) 37÷87(iv) 213÷35(v) 312÷83(vi) 25÷112(vii) 315÷123(viii) 215÷115
- \计算 (x+y)÷(x−y). 若,(i) x=23,y=32(ii) x=25,y=12(iii) x=54,y=−13(iv) x=27,y=43(v) x=14,y=32
- 将下列二项式的平方写成三项式:(i)(x+2)2(ii) (8a+3b)2(iii) (2m+1)2(iv) (9a+16)2(v) (x+x22)2(vi) (x4−y3)2(vii) (3x−13x)2(viii) (xy−yx)2(ix) (3a2−5b4)2(x) (a2b−bc2)2(xi) (2a3b+2b3a)2(xii) (x2−ay)2
- (i) x2−3x+5−12(3x2−5x+7)(ii) [5−3x+2y−(2x−y)]−(3x−7y+9)(iii) 112x2y−94xy2+14xy−114y2x+115yx2+ 12xy(iv) (13y2−47y+11)−(17y−3+2y2)− (27y−23y2+2)(v) −12a2b2c+13ab2c−14abc2−15cb2a2+ 16cb2a+17c2ab+18ca2b.
- 减去:(i) 从 x33−52x2+ 35x+14 中减去 65x2−45x3+56+32x(ii) 从 13a3−34a2− 52 中减去 5a22+3a32+a3−65(iii) 从 72−x3− x25 中减去 74x3+35x2+12x+92(iv) 从 13−53y2 中减去 y33+73y2+12y+12(v) 从 32ab−74ac− 56bc 中减去 23ac−57ab+23bc
- 展开下列各式:(23m+32n)2。
- 计算:(i) (5)−2(ii) (−3)−2(iii) (13)−4(iv) (−12)−1
- 利用适当的恒等式求下列各式的积:(i) (x+4)(x+10)(ii) (x+8)(x−10)(iii) (3x+4)(3x−5)(iv) (y2+32)(y2−32)(v) (3−2x)(3+2x)
- 求积 −25x2y2(3x2−y2)。
- 化简:(i). 2×103(ii). 72×22(iii). 23×5(iv). 3×44(v). 0×102(vi). 52×33(viii). 24×32(viii). 32×104