如果一个圆柱形柱子的曲面面积是264平方米,它的体积是924立方米,那么求它的高和直径。
已知
圆柱形柱子的曲面面积为$264\ m^2$,体积为$924\ m^3$。
求解
我们需要求出柱子的高和直径。
解:
设圆柱底面半径为$r$,高为$h$。
半径为r,高为h的圆柱的曲面面积 = $2\pi rh$
因此,
$2\pi rh= 2 \times \frac{22}{7} \times r \times h$
$264(7) = 44rh$
$h=\frac{42}{r}\ m$.....(i)
圆柱体积 = $\pi r^2h$
$924=\frac{22}{7} \times r^2 \times \frac{42}{r}$ [由(i)式]
$42=6r$
$r=\frac{42}{6}$
$r=7\ m$
这意味着,
$h=\frac{42}{7}\ m$
$h=6\ m$
直径$=2r=2(7)\ m=14\ m$。
广告