如果\( x \)和\( 3 y \)成反比,并且当\( y=14 \)时\( x=\frac{1}{3} \),求当\( x \)为\( \frac{1}{2} \)时\( y \)的值。
已知
\( x \)和\( 3 y \)成反比,并且当\( y=14 \)时\( x=\frac{1}{3} \)。
求解
我们需要求当\( x \)为\( \frac{1}{2} \)时\( y \)的值。
解答
$x \propto \frac{1}{3y}$
这意味着:
$x \times 3y=k$
$3xy=k$
当\( y=14 \)时\( x=\frac{1}{3} \)
这意味着:
$3\times \frac{1}{3}\times14=k$
$k=14$
因此:
$3\times(\frac{1}{2})\times y=14$
$y=\frac{14\times2}{3}$
$y=\frac{28}{3}$
当x为$\frac{1}{2}$时,y的值为$\frac{28}{3}$。
- 相关文章
- 化简:$\frac{x^{-3}-y^{-3}}{x^{-3} y^{-1}+(x y)^{-2}+y^{-1} x^{-3}}$。
- 如果$\frac{x+1}{y} = \frac{1}{2}, \frac{x}{y-2} = \frac{1}{2}$,求x和y。
- 求$(x +y) \div (x - y)$的值。(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- 将下列方程组化为一元一次方程组求解:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \)(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- 化简:\( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y \).
- 解下列方程组:$\frac{6}{x+y} =\frac{7}{x-y}+3$$\frac{1}{2(x+y)}=\frac{1}{3(x-y)}$
- 解方程组:$\frac{x}{2}+\frac{2y}{3}=-1$ 和 $x-\frac{y}{3}=3$。
- 如果\( 2^{x}=3^{y}=12^{z} \),证明\( \frac{1}{z}=\frac{1}{y}+\frac{2}{x} \).
- (i) \( x^{2}-3 x+5-\frac{1}{2}\left(3 x^{2}-5 x+7\right) \)(ii) \( [5-3 x+2 y-(2 x-y)]-(3 x-7 y+9) \)(iii) \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+ \) \( \frac{1}{2} x y \)(iv) \( \left(\frac{1}{3} y^{2}-\frac{4}{7} y+11\right)-\left(\frac{1}{7} y-3+2 y^{2}\right)- \) \( \left(\frac{2}{7} y-\frac{2}{3} y^{2}+2\right) \)(v) \( -\frac{1}{2} a^{2} b^{2} c+\frac{1}{3} a b^{2} c-\frac{1}{4} a b c^{2}-\frac{1}{5} c b^{2} a^{2}+ \) \( \frac{1}{6} c b^{2} a+\frac{1}{7} c^{2} a b+\frac{1}{8} c a^{2} b \).
- 1. 分解因式 \( 3 x y - 2 + 3 y - 2 x \)A) \( (x+1),(3 y-2) \)B) \( (x+1),(3 y+2) \)C) \( (x-1),(3 y-2) \)D) \( (x-1),(3 y+2) \)2. 分解因式 \( xy-x-y+1 \)A) \( (x-1),(y+1) \)B) \( (x+1),(y-1) \)C) \( (x-1),(y-1) \)D) \( (x+1),(y+1) \)
- 如果\( 2^{x}=3^{y}=6^{-z} \),证明\( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0 \).
- 解下列方程组:$\frac{3}{x+y} +\frac{2}{x-y}=2$$\frac{9}{x+y}-\frac{4}{x-y}=1$
- 计算乘积:\( \left(3 x^{2} y-5 x y^{2}\right) \)乘以\( \left(\frac{1}{5} x^{2}+\frac{1}{3} y^{2}\right) \)
- 计算下列乘积,并验证当$x = -1, y = -2$时的结果:\( \left(\frac{1}{3} x-\frac{y^{2}}{5}\right)\left(\frac{1}{3} x+\frac{y^{2}}{5}\right) \)
- 验证:$x\times(y\times z)=(x\times y)\times z$,其中$x=\frac{1}{2},\ y=\frac{1}{3}$ 和 $z=\frac{1}{4}$。