如果 $x=\frac{2}{13}$,$y=\frac{-3}{5}$,$z=\frac{-7}{13}$,则验证:(i)结合律 (ii)分配律。
已知
已知值:$x=\frac{2}{13}$,$y=\frac{-3}{5}$,$z=\frac{-7}{13}$。
要求
我们需要验证给定值是否满足结合律和分配律。
解答:
(i) 结合律
$ (a \times b) \times c = a \times (b \times c) $
左边
$ (x \times y) \times z = ( \frac{2}{13}\times\frac{-3}{5} ) \times \frac{-7}{13} = \frac{42}{845}$
右边
$ x \times (y \times z) = \frac{2}{13}\times(\frac{-3}{5} \times \frac{-7}{13}) = \frac{42}{845}$
左边 = 右边。
因此验证成立。
(ii) 分配律
$a (b+c) = a\times b + a\times c$
左边
$ x \times (y + z ) = \frac{2}{13}\times(\frac{-3}{5} + \frac{-7}{13})$
$ = \frac{2}{13}\times \frac{(3\times13+5\times7)}{13\times5}$
$= \frac{2}{13}\times \frac{(39+35)}{65}$
$= \frac{2}{13}\times \frac {74}{65}$
$= \frac{148}{845}$
右边
$x\times y + x\times z = \frac{2}{13}\times(\frac{-3}{5}) + \frac{2}{13}\times (\frac{-7}{13})$
$= \frac{-6}{65} + \frac{-14}{169}$
$= \frac{(-6\times13-14\times5)}{845}$
$= \frac{(-78-70)}{845}$
$= \frac{-148}{845}$
左边 = 右边。
因此验证成立。
- 相关文章
- 验证性质:$x \times(y + z) = x \times y + x \times z$,取值:(i) \( x=\frac{-3}{7}, y=\frac{12}{13}, z=\frac{-5}{6} \)(ii) \( x=\frac{-12}{5}, y=\frac{-15}{4}, z=\frac{8}{3} \)(iii) \( x=\frac{-8}{3}, y=\frac{5}{6}, z=\frac{-13}{12} \)(iv) \( x=\frac{-3}{4}, y=\frac{-5}{2}, z=\frac{7}{6} \)
- 验证性质:$x \times (y \times z) = (x \times y) \times z$,取值:(i) \( x=\frac{-7}{3}, y=\frac{12}{5}, z=\frac{4}{9} \)(ii) \( x=0, y=\frac{-3}{5}, z=\frac{-9}{4} \)(iii) \( x=\frac{1}{2}, y=\frac{5}{-4}, z=\frac{-7}{5} \)(iv) \( x=\frac{5}{7}, y=\frac{-12}{13}, z=\frac{-7}{18} \)
- 验证性质:$x \times y = y \times x$,取值:(i) \( x=-\frac{1}{3}, y=\frac{2}{7} \)(ii) \( x=\frac{-3}{5}, y=\frac{-11}{13} \)(iii) \( x=2, y=\frac{7}{-8} \)(iv) \( x=0, y=\frac{-15}{8} \)
- 利用分配律计算:(i) \( \frac{9}{13} \times 3 \frac{1}{5}-2 \frac{1}{3} \times \frac{9}{13} \)(ii) \( 6 \frac{2}{5} \times \frac{3}{7}+\frac{4}{7} \times 6 \frac{2}{5} \)
- 验证有理数加法的结合律,即 $(x + y) + z = x + (y + z)$,当:(i) \( x=\frac{1}{2}, y=\frac{2}{3}, z=-\frac{1}{5} \)(ii) \( x=\frac{-2}{5}, y=\frac{4}{3}, z=\frac{-7}{10} \)(iii) \( x=\frac{-7}{11}, y=\frac{2}{-5}, z=\frac{-3}{22} \)(iv) \( x=-2, y=\frac{3}{5}, z=\frac{-4}{3} \)
- 解方程组:$\frac{3 x}{2}-\frac{5 y}{3}=-2$$\frac{x}{3}+\frac{y}{2}=\frac{13}{6}$
- 计算:(i) \( \frac{-3}{5} \div 2 \)(ii) \( \frac{-2}{13} \div \frac{1}{7} \)
- 合并下列代数式:(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- 验证性质 \( x \times(y+z)=(x \times y)+(x \times z) \),已知 \( x=\frac{-5}{2}, y=\frac{1}{2} \) 和 \( z=-\frac{10}{7} \)。
- 计算下列各题:(i) \( \frac{2}{3}-\frac{3}{5} \)(ii) \( \frac{-4}{7}-\frac{2}{-3} \)(iii) \( \frac{4}{7}-\frac{-5}{-7} \)(iv) \( -2-\frac{5}{9} \)(v) \( \frac{-3}{-8}-\frac{-2}{7} \)(vi) \( \frac{-4}{13}-\frac{-5}{26} \)(vii) \( \frac{-5}{14}-\frac{-2}{7} \).(viii) \( \frac{13}{15}-\frac{12}{25} \)(ix) \( \frac{-6}{13}-\frac{-7}{13} \)(x) \( \frac{7}{24}-\frac{19}{36} \)(xi) \( \frac{5}{63}-\frac{-8}{21} \)
- 计算下列乘积:\( \left(\frac{-7}{5} x y^{2} z\right) \times\left(\frac{13}{3} x^{2} y z^{2}\right) \)
- 计算 $(x +y) \div (x - y)$,已知:(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- 适当调整顺序并计算下列各题的和:(i) \( \frac{11}{12}+\frac{-17}{3}+\frac{11}{2}+\frac{-25}{2} \)(ii) \( \frac{-6}{7}+\frac{-5}{6}+\frac{-4}{9}+\frac{-15}{7} \)(iii) \( \frac{3}{5}+\frac{7}{3}+\frac{9}{5}+\frac{-13}{15}+\frac{-7}{3} \)(iv) \( \frac{4}{13}+\frac{-5}{8}+\frac{-8}{13}+\frac{9}{13} \)(v) \( \frac{2}{3}+\frac{-4}{5}+\frac{1}{3}+\frac{2}{5} \)(vi) \( \frac{1}{8}+\frac{5}{12}+\frac{2}{7}+\frac{7}{12}+\frac{9}{7}+\frac{-5}{16} \)
- 解下列方程组:$\frac{2}{x}\ +\ \frac{3}{y}\ =\ 13$$\frac{5}{x}\ –\ \frac{4}{y}\ =\ -2$
- 解下列方程并验证答案:(i) $\frac{2x-3}{3x+2}=\frac{-2}{3}$(ii) $\frac{2-y}{y+7}=\frac{3}{5}$