证明以下恒等式:\( \left(\tan \theta+\frac{1}{\cos \theta}\right)^{2}+\left(\tan \theta-\frac{1}{\cos \theta}\right)^{2}=2\left(\frac{1+\sin ^{2} \theta}{1-\sin ^{2} \theta}\right) \)
待办事项
我们需要证明\( \left(\tan \theta+\frac{1}{\cos \theta}\right)^{2}+\left(\tan \theta-\frac{1}{\cos \theta}\right)^{2}=2\left(\frac{1+\sin ^{2} \theta}{1-\sin ^{2} \theta}\right) \)。
解答
我们知道,
$\sin^2 A+\cos^2 A=1$
$\operatorname{cosec}^2 A-\cot^2 A=1$
$\sec^2 A-\tan^2 A=1$
$\cot A=\frac{\cos A}{\sin A}$
$\tan A=\frac{\sin A}{\cos A}$
$\operatorname{cosec} A=\frac{1}{\sin A}$
$\sec A=\frac{1}{\cos A}$
因此,
$\left(\tan \theta+\frac{1}{\cos \theta}\right)^{2}+\left(\tan \theta-\frac{1}{\cos \theta}\right)^{2}=\left(\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}\right)^{2}+\left(\frac{\sin \theta}{\cos \theta}-\frac{1}{\cos \theta}\right)^{2}$
$=\left(\frac{\sin \theta+1}{\cos \theta}\right)^{2}+\left(\frac{\sin \theta-1}{\cos \theta}\right)^{2}$
$=\frac{(\sin \theta+1)^{2}}{\cos ^{2} \theta}+\frac{(\sin \theta-1)^{2}}{\cos ^{2} \theta}$
$=\frac{\sin^2 \theta+1+2\sin \theta+\sin^2 \theta+1-2\sin \theta}{\cos ^{2} \theta}$
$=\frac{2 \sin ^{2} \theta+2}{\cos ^{2} \theta}$
$=\frac{2\left(1+\sin ^{2} \theta\right)}{1-\sin ^{2} \theta}$
证毕。