证明以下三角恒等式:(1+tan2θ)(1−sinθ)(1+sinθ)=1
待办事项
我们需要证明(1+tan2θ)(1−sinθ)(1+sinθ)=1.
解答
我们知道:
sin2θ+cos2θ=1.....(i)
sec2θ−tan2θ=1.......(ii)
secθ×cosθ=1.......(iii)
因此:
(1+tan2θ)(1−sinθ)(1+sinθ)=(1+tan2θ)(12−sin2θ) [因为 (a−b)(a+b)=a2−b2]
=(sec2θ)(cos2θ) [根据 (i) 和 (ii)]
=(secθ×cosθ)2
=12 [根据 (iii)]
=1
证毕。
广告