证明:\( \frac{\left(a+\frac{1}{b}\right)^{m} \times\left(a-\frac{1}{b}\right)^{n}}{\left(b+\frac{1}{a}\right)^{m} \times\left(b-\frac{1}{a}\right)^{n}}=\left(\frac{a}{b}\right)^{m+n} \)
已知
\( \frac{\left(a+\frac{1}{b}\right)^{m} \times\left(a-\frac{1}{b}\right)^{n}}{\left(b+\frac{1}{a}\right)^{m} \times\left(b-\frac{1}{a}\right)^{n}}=\left(\frac{a}{b}\right)^{m+n} \)
要求:
我们需要证明\( \frac{\left(a+\frac{1}{b}\right)^{m} \times\left(a-\frac{1}{b}\right)^{n}}{\left(b+\frac{1}{a}\right)^{m} \times\left(b-\frac{1}{a}\right)^{n}}=\left(\frac{a}{b}\right)^{m+n} \).
解答
我们知道:
$(a^{m})^{n}=a^{mn}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
因此:
左边 =$\frac{(a+\frac{1}{b})^{m} \times (a-\frac{1}{b})^{n}}{(b+\frac{1}{a})^{m} \times (b-\frac{1}{a})^{n}}$
$=\frac{(\frac{ab+1}{b})^{m} \times (\frac{ab-1}{b})^{n}}{(\frac{ab+1}{a})^{m} \times (\frac{ab-1}{a})^{n}}$
$=\frac{\frac{(ab+1)^{m} \times(ab-1)^{n}}{b^{m} \times b^{n}}}{\frac{(ab+1)^{m}}{a^{m}} \times \frac{(ab-1)^{n}}{a^{n}}}$
$=\frac{(ab+1)^{m}(ab-1)^{n} \times a^{m} \times a^{n}}{b^{m} \times b^{n}(ab+1)^{m}(ab-1)^{n}}$
$=\frac{a^{m} \times a^{n}}{b^{m} \times b^{n}}$
$=\frac{a^{m+n}}{b^{m+n}}$
$=(\frac{a}{b})^{m+n}$
= 右边
证毕。