用因式分解法解下列二次方程
$3(\frac{7x+1}{5x-3})-4(\frac{5x-3}{7x+1})=11, x≠\frac{3}{5}, \frac{-1}{7}$
已知
给定的二次方程为 $3(\frac{7x+1}{5x-3})-4(\frac{5x-3}{7x+1})=11, x≠\frac{3}{5}, \frac{-1}{7}$。
要求
我们需要解给定的二次方程。
解
$3(\frac{7x+1}{5x-3})-4(\frac{5x-3}{7x+1})=11$
$\frac{3(7x+1)(7x+1)-4(5x-3)(5x-3)}{(5x-3)(7x+1)}=11$
$\frac{3(49x^2+7x+7x+1)-4(25x^2-15x-15x+9)}{35x^2-21x+5x-3}=11$
$\frac{147x^2+42x+3-100x^2+120x-36}{35x^2-16x-3}=11$
$47x^2+162x-33=11(35x^2-16x-3)$
$47x^2+162x-33=385x^2-176x-33$
$(385-47)x^2+(-176-162)x-33+33=0$
$338x^2-338x=0$
$338(x^2-x)=0$
$x^2-x=0$
$x(x-1)=0$
$x=0$ 或 $x-1=0$
$x=0$ 或 $x=1$
$x$ 的值为 $0$ 和 $1$。
- 相关文章
- 用因式分解法解下列二次方程:$7x+\frac{3}{x}=35\frac{3}{5}$
- 用因式分解法解下列二次方程:$\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3}, x≠2, 4$
- 解下列方程并验证你的答案:(i) $\frac{7x-2}{5x-1}=\frac{7x+3}{5x+4}$(ii) $(\frac{x+1}{x+2})^2=\frac{x+2}{x+4}$
- 用因式分解法解下列二次方程:$\frac{3}{x+1}-\frac{1}{2}=\frac{2}{3x-1}, x ≠-1, \frac{1}{3}$
- 用因式分解法解下列二次方程:$3(\frac{3x-1}{2x+3})-2(\frac{2x+3}{3x-1})=5, x≠\frac{1}{3}, \frac{-3}{2}$
- 用因式分解法解下列二次方程:$\frac{2}{x+1}+\frac{3}{2(x-2)}=\frac{23}{5x}, x ≠0, -1, 2$
- 用因式分解法解下列二次方程:$\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}+\frac{1}{(x-3)(x-4)}=\frac{1}{6}$
- 用因式分解法解下列二次方程:$\frac{3}{x+1}+\frac{4}{x-1}=\frac{29}{4x-1}, x ≠1, -1, \frac{1}{4}$
- 用因式分解法解下列二次方程:$\frac{1}{x}\ –\ \frac{1}{x\ -\ 2}\ =\ 3$
- 解关于x的方程:$\frac{1}{x+1} +\frac{3}{5x+1} =\frac{5}{x+4} ,\ x\neq 1,\ -\frac{1}{5} ,\ -4$
- 解下列表达式:$x-(2x-5x-\frac{1}{3}) = x-\frac{1}{3}+\frac{1}{2}$
- 用因式分解法解下列二次方程:$\frac{1}{x\ +\ 4}\ –\ \frac{1}{x\ -\ 7}\ =\ \frac{11}{30},\ x\ ≠\ 4,\ 7$
- 用因式分解法解下列二次方程:$\frac{4}{x}-3=\frac{5}{2x+3}, x ≠0,\frac{-3}{2}$
- 用因式分解法解下列二次方程:$\frac{x\ -\ 3}{x\ +\ 3}\ -\ \frac{x\ +\ 3}{x\ -\ 3}\ =\ \frac{48}{7},\ x\ ≠\ 3,\ -3$
- 用因式分解法解下列二次方程:$\frac{2x}{x\ -\ 4}\ +\ \frac{2x\ -\ 5}{x\ -\ 3}\ =\ \frac{25}{3},\ x\ ≠\ 3,\ 4$