用因式分解法解下列二次方程
$3(\frac{7x+1}{5x-3})-4(\frac{5x-3}{7x+1})=11, x≠\frac{3}{5}, \frac{-1}{7}$


已知

给定的二次方程为 $3(\frac{7x+1}{5x-3})-4(\frac{5x-3}{7x+1})=11, x≠\frac{3}{5}, \frac{-1}{7}$。


要求

我们需要解给定的二次方程。


$3(\frac{7x+1}{5x-3})-4(\frac{5x-3}{7x+1})=11$

$\frac{3(7x+1)(7x+1)-4(5x-3)(5x-3)}{(5x-3)(7x+1)}=11$

$\frac{3(49x^2+7x+7x+1)-4(25x^2-15x-15x+9)}{35x^2-21x+5x-3}=11$

$\frac{147x^2+42x+3-100x^2+120x-36}{35x^2-16x-3}=11$

$47x^2+162x-33=11(35x^2-16x-3)$

$47x^2+162x-33=385x^2-176x-33$

$(385-47)x^2+(-176-162)x-33+33=0$

$338x^2-338x=0$

$338(x^2-x)=0$

$x^2-x=0$

$x(x-1)=0$

$x=0$ 或 $x-1=0$

$x=0$ 或 $x=1$

$x$ 的值为 $0$ 和 $1$。

更新于: 2022年10月10日

60 次浏览

开启你的 职业生涯

完成课程获得认证

开始学习
广告