下列哪些表达式是多项式?哪些不是?请说明理由。
(i) \( 4 x^{2}+5 x-2 \)
(ii) \( y^{2}-8 \)
(iii) 5
(iv) \( 2 x^{2}+\frac{3}{x}-5 \)
已知
给定的表达式为:
(i) \( 4 x^{2}+5 x-2 \)
(ii) \( y^{2}-8 \)
(iii) 5
(iv) \( 2 x^{2}+\frac{3}{x}-5 \)
任务
我们需要找出给定的表达式中哪些是多项式。
解答
多项式
多项式是指每个项都是一个常数乘以一个变量的整数次幂的表达式。
(i) $4x^2+5x-2$ 是一个多项式。这里,各项中的变量 (x) 都被提升到整数次幂。
因此,$4x^2+5x-2$ 是一个多项式。
(ii) $y^2-8$ 是一个多项式。这里,各项中的变量 (x) 都被提升到整数次幂。
因此,$y^2-8$ 是一个多项式。
(iii) $5$ 可以写成 $5x^0$。这里,各项中的变量 (x) 都被提升到整数次幂。
因此,$5$ 是一个多项式。
(iv) \( 2 x^{2}+\frac{3}{x}-5 \) 可以写成 $2x^2+3x^{-1}-5$。这里,一项中的变量被提升到 -1 次幂,这不是一个整数。
因此,\( 2 x^{2}+\frac{3}{x}-5 \) 不是一个多项式。
- 相关文章
- 描述以下表达式是如何得到的:$(i) 7 xy+5, (ii) x^{2} y, (iii) 4 x^{2}-5 x$。
- 以下哪些表达式不是多项式?:(i) $x^2+2x^{-2}$(ii) $\sqrt{ax}+x^2-x^3$(iii) $3y^3-\sqrt{5}y+9$(iv) $ax^{\frac{1}{2}}y^7+ax+9x^2+4$(v) $3x^{-3}+2x^{-1}+4x+5$
- 将以下代数表达式相加:(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- \求 $(x +y) \div (x - y)$。如果:(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- 因式分解:(i) \( x^{3}-2 x^{2}-x+2 \)(ii) \( x^{3}-3 x^{2}-9 x-5 \)(iii) \( x^{3}+13 x^{2}+32 x+20 \)(iv) \( 2 y^{3}+y^{2}-2 y-1 \)
- 使用合适的恒等式求以下积:(i) \( (x+4)(x+10) \)(ii) \( (x+8)(x-10) \)(iii) \( (3 x+4)(3 x-5) \)(iv) \( \left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right) \)(v) \( (3-2 x)(3+2 x) \)
- 写出以下每个多项式的次数:(i) \( 5 x^{3}+4 x^{2}+7 x \)(ii) \( 4-y^{2} \)(iii) \( 5 t-\sqrt{7} \)(iv) 3
- 减法:(i) 从 $12xy$ 中减去 $-5xy$(ii) 从 $-7a^2$ 中减去 $2a^2$(iii) 从 \( 3 a-5 b \) 中减去 \( 2 a-b \)(iv) 从 \( 4 x^{3}+x^{2}+x+6 \) 中减去 \( 2 x^{3}-4 x^{2}+3 x+5 \)(v) 从 \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \) 中减去 \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \)(vi) 从 \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \) 中减去 \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \)(vii) 从 \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \) 中减去 \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \)(viii) 从 \( \frac{3}{5} b c-\frac{4}{5} a c \) 中减去 \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \)
- 求以下积:(i) $(x + 4) (x + 7)$(ii) $(x - 11) (x + 4)$(iii) $(x + 7) (x - 5)$(iv) $(x - 3) (x - 2)$(v) $(y^2 - 4) (y^2 - 3)$(vi) $(x + \frac{4}{3}) (x + \frac{3}{4})$(vii) $(3x + 5) (3x + 11)$(viii) $(2x^2 - 3) (2x^2 + 5)$(ix) $(z^2 + 2) (z^2 - 3)$(x) $(3x - 4y) (2x - 4y)$(xi) $(3x^2 - 4xy) (3x^2 - 3xy)$(xii) $(x + \frac{1}{5}) (x + 5)$(xiii) $(z + \frac{3}{4}) (z + \frac{4}{3})$(xiv) $(x^2 + 4) (x^2 + 9)$(xv) $(y^2 + 12) (y^2 + 6)$(xvi) $(y^2 + \frac{5}{7}) (y^2 - \frac{14}{5})$(xvii) $(p^2 + 16) (p^2 - \frac{1}{4})$
- 解方程:$2(x+2)+5(x+5)=4(x-8)+2(x-2)$
- 以下哪些表达式是一个变量的多项式,哪些不是?请说明理由。(i) \( 4 x^{2}-3 x+7 \)(ii) \( y^{2}+\sqrt{2} \)(iii) \( 3 \sqrt{t}+t \sqrt{2} \)(iv) \( y+\frac{2}{y} \)(v) \( x^{10}+y^{3}+t^{50} \)
- 因式分解:(i) \( 12 x^{2}-7 x+1 \)(ii) \( 2 x^{2}+7 x+3 \)(iii) \( 6 x^{2}+5 x-6 \)(iv) \( 3 x^{2}-x-4 \)
- 确定以下哪些多项式具有 \( (x+1) \) 因子:(i) \( x^{3}+x^{2}+x+1 \)(ii) \( x^{4}+x^{3}+x^{2}+x+1 \)(iii) \( x^{4}+3 x^{3}+3 x^{2}+x+1 \)(iv) \( x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2} \)
- 解下列线性方程:\( 2(x-2)-3(x-3)=5(x-5)+4(x-8) \)
- 求以下积:\( \frac{7}{5} x^{2} y\left(\frac{3}{5} x y^{2}+\frac{2}{5} x\right) \)