将下列立方式展开
(i) (2x+1)3
(ii) (2a−3b)3
(iii) [32x+1]3
(iv) [x−23y]3
解题步骤
我们需要将给定的立方式展开。
解答
我们知道:
(a+b)3=a3+b3+3ab(a+b)
(a−b)3=a3−b3−3ab(a−b)
因此:
(i) (2x+1)3=(2x)3+13+3(2x)(1)(2x+1)
=8x3+1+6x(2x+1)
=8x3+1+12x2+6x
=8x3+12x2+6x+1
因此 (2x+1)3=8x3+12x2+6x+1
(ii) (2a−3b)3=(2a)3−(3b)3−3(2a)(3b)(2a−3b)
=8a3−27b3−18ab(2a−3b)
=8a3−27b3−36a2b+54ab2
=8a3−36a2b+54ab2−27b3
因此 (2a−3b)3=8a3−36a2b+54ab2−27b3
(iii) [32x+1]3=(32x)3+13+3(32x)(1)(32x+1)
=278x3+1+92x(32x+1)
=278x3+1+274x2+92x
=278x3+274x2+92x+1
因此 [32x+1]3=278x3+274x2+92x+1
(iv) [x−23y]3=x3−(23y)3−3(x)(23y)(x−23y)
=x3−827y3−2xy(x−23y)
=x3−827y3−2x2y+43xy2
=x3−2x2y+43xy2−827y3
因此 [x−23y]3=x3−2x2y+43xy2−827y3
广告