点\( A\left(x_{1}, y_{1}\right), \mathrm{B}\left(x_{2}, y_{2}\right) \)和\( \mathrm{C}\left(x_{3}, y_{3}\right) \)是\( \Delta \mathrm{ABC} \)的顶点
三角形ABC的重心的坐标是什么?
已知
点\( A\left(x_{1}, y_{1}\right), \mathrm{B}\left(x_{2}, y_{2}\right) \)和\( \mathrm{C}\left(x_{3}, y_{3}\right) \)是\( \Delta \mathrm{ABC} \)的顶点
要求
我们必须找到三角形ABC的重心的坐标。
解
我们知道,
三角形重心的坐标 = \(\left(\frac{\text {所有顶点横坐标之和}}{3}, \frac{\text {所有顶点纵坐标之和}}{3}\right)\)
因此,
三角形ABC的重心的坐标 = \(\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)\)
- 相关文章
- 点\( A\left(x_{1}, y_{1}\right), \mathrm{B}\left(x_{2}, y_{2}\right) \)和\( \mathrm{C}\left(x_{3}, y_{3}\right) \)是\( \Delta \mathrm{ABC} \)的顶点,从\( \mathrm{A} \)出发的中线与\( \mathrm{BC} \)相交于\( \mathrm{D} \)。求点\( \mathrm{D} \)的坐标。
- 点\( A\left(x_{1}, y_{1}\right), \mathrm{B}\left(x_{2}, y_{2}\right) \)和\( \mathrm{C}\left(x_{3}, y_{3}\right) \)是\( \Delta \mathrm{ABC} \)的顶点,求AD上一点P的坐标,使得\( AP: PD=2: 1 \)
- 如果三个点$(x_1, y_1), (x_2, y_2), (x_3, y_3)$在同一条直线上,证明\( \frac{y_{2}-y_{3}}{x_{2} x_{3}}+\frac{y_{3}-y_{1}}{x_{3} x_{1}}+\frac{y_{1}-y_{2}}{x_{1} x_{2}}=0 \)。
- 如果\( \mathrm{D}\left(\frac{-1}{2}, \frac{5}{2}\right), \mathrm{E}(7,3) \)和\( \mathrm{F}\left(\frac{7}{2}, \frac{7}{2}\right) \)是\( \triangle \mathrm{ABC} \)的边的中点,求\( \triangle \mathrm{ABC} \)的面积。
- 证明点\( \left(1,-\frac{3}{2}\right),\left(-3,-\frac{7}{2}\right) \)和\( \left(-4,-\frac{3}{2}\right) \)是直角三角形的顶点。
- 化简:(i) \( \left\{\left(\frac{1}{3}\right)^{-3}-\left(\frac{1}{2}\right)^{-3}\right\} \div\left(\frac{1}{4}\right)^{-3} \)(ii) \( \left(3^{2}-2^{2}\right) \times\left(\frac{2}{3}\right)^{-3} \)(iii) \( \left\{\left(\frac{1}{2}\right)^{-1} \times(-4)^{-1}\right\}^{-1} \)(iv) \( \left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{-2}\right]^{-1} \)(v) \( \left\{\left(\frac{2}{3}\right)^{2}\right\}^{3} \times\left(\frac{1}{3}\right)^{-4} \times 3^{-1} \times 6^{-1} \)
- 化简:(i) \( \left(3^{2}+2^{2}\right) \times\left(\frac{1}{2}\right)^{3} \)(ii) \( \left(3^{2}-2^{2}\right) \times\left(\frac{2}{3}\right)^{-3} \)(iii) \( \left[\left(\frac{1}{3}\right)^{-3}-\left(\frac{1}{2}\right)^{-3}\right] \div\left(\frac{1}{4}\right)^{-3} \)(iv) \( \left(2^{2}+3^{2}-4^{2}\right) \div\left(\frac{3}{2}\right)^{2} \)
- 完成以下方程式-1. 铁\( (\mathrm{Fe})+ \) 氧气\( \left(\mathrm{O}_{2}\right)+ \) 水\( \left(\mathrm{H}_{2} \mathrm{O}\right) \rightarrow ? \)2. 镁\( (\mathrm{Mg})+ \) 氧气\( \left(\mathrm{O}_{2}\right){\prime} \rightarrow ? \)
- 化简:\( \left[\left(\frac{1}{3}\right)^{-1}-\left(\frac{2}{5}\right)^{-1}\right]^{-2} \div\left(\frac{3}{4}\right)^{-3} \)
- 求下列各式的值:(i) \( \left(\frac{1}{2}\right)^{-1}+\left(\frac{1}{3}\right)^{-1}+\left(\frac{1}{4}\right)^{-1} \)(ii) \( \left(\frac{1}{2}\right)^{-2}+\left(\frac{1}{3}\right)^{-2}+\left(\frac{1}{4}\right)^{-2} \)(iii) \( \left(2^{-1} \times 4^{-1}\right) \div 2^{-2} \)(iv) \( \left(5^{-1} \times 2^{-1}\right) \div 6^{-1} \)
- 点\( \mathrm{A}(2,9), \mathrm{B}(a, 5) \)和\( \mathrm{C}(5,5) \)是三角形\( \mathrm{ABC} \)的顶点,且在B处成直角。求a的值,并由此求出\( \triangle \mathrm{ABC} \)的面积。
- 将下列各数写成指数形式:(i) \( \left(\frac{3}{2}\right)^{-1} \times\left(\frac{3}{2}\right)^{-1} \times\left(\frac{3}{2}\right)^{-1} \times\left(\frac{3}{2}\right)^{-1} \)(ii) \( \left(\frac{2}{5}\right)^{-2} \times\left(\frac{2}{5}\right)^{-2} \times\left(\frac{2}{5}\right)^{-2} \)
- 计算下列各式的值:(i) \( \left[\left(5^{2}+12^{2}\right)^{\frac{1}{2}}\right]^{3} \)(ii) \( \left[\left(6^{2}+8^{2}\right)^{\frac{1}{2}}\right]^{3} \)。
- 求下列各式的值(i) \( 3^{-1}+4^{-1} \)(ii) \( \left(3^{0}+4^{-1}\right) \times 2^{2} \)(iii) \( \left(3^{-1}+4^{-1}+5^{-1}\right)^{0} \)(iv) \( \left\{\left(\frac{1}{3}\right)^{-1}-\left(\frac{1}{4}\right)^{-1}\right\}^{-1} \)
- 化简下列各式。(a) \( \left(\frac{1}{2} a-b\right)\left(\frac{1}{2} a+b\right)\left(\frac{1}{4} a^{2}+b^{2}\right) \)(b) \( \left(\frac{p}{2}-\frac{q}{3}\right)\left(\frac{p}{2}+\frac{q}{3}\right)\left(\frac{p^{2}}{4}+\frac{q^{2}}{9}\right)\left(\frac{p^{4}}{16}+\frac{a^{4}}{81}\right) \)(c) \( \left(a^{2}+1-a\right)\left(a^{2}-1+a\right) \)(d) \( \left(4 b^{2}+2 b+1\right)\left(4 b^{2}-2 b-1\right) \)