辛普森 1/3 规则用于定积分
辛普森 1/3 规则与梯形规则相似,也用于求解 a 到 b 区间上的积分值。梯形规则和辛普森 1/3 规则的主要区别在于,梯形规则中将整个部分划分为一些梯形,而此方法中每个梯形又分为两部分。
对于此规则,我们将采用以下公式

其中 h是间隔宽度,n 是间隔数量。我们可以使用

输入和输出
Input: The function f(x): (x+(1/x). The lower and upper limit: 1, 2. The number of intervals: 20. Output: The answer is: 2.19315
算法
integrateSimpson(a, b, n)
输入 − 积分的下限和上限以及间隔数量 n。
输出 − 积分后的结果。
Begin h := (b - a)/n res := f(a) + f(b) lim := n/2 for i := 1 to lim, do oddSum := oddSum + f(a + (2i - 1)h) done oddSum := oddSum * 4 for i := 1 to lim-1, do evenSum := evenSum + f(a + 2ih) done evenSum := evenSum * 2 res := res + oddSum + evenSum res := res * (h/3) return res End
示例
#include<iostream>
#include<cmath>
using namespace std;
float mathFunc(float x) {
return (x+(1/x)); //function 1 + 1/x
}
float integrate(float a, float b, int n) {
float h, res = 0.0, oddSum = 0.0, evenSum = 0.0, lim;
int i;
h = (b-a)/n; //calculate the distance between two interval
res = (mathFunc(a)+mathFunc(b)); //initial sum using f(a) and f(b)
lim = n/2;
for(i = 1; i<=lim; i++)
oddSum += mathFunc(a+(2*i-1)*h); //sum of numbers, placed at odd number
oddSum *= 4; //odd sum are multiplied by 4
for(i = 1; i<lim; i++)
evenSum += mathFunc(a+(2*i)*h); //sum of numbers, placed at even number
evenSum *= 2; //even sum are multiplied by 2
res += oddSum+evenSum;
res *= (h/3);
return res; //The result of integration
}
main() {
float result, lowLim, upLim;
int interval;
cout << "Enter Lower Limit, Upper Limit and interval: ";
cin >>lowLim >>upLim >>interval;
result = integrate(lowLim, upLim, interval);
cout << "The answer is: " << result;
}输出
Enter Lower Limit, Upper Limit and interval: 1 2 20 The answer is: 2.19315
广告
数据结构
网络
关系型数据库管理系统
操作系统
Java
iOS
HTML
CSS
安卓
Python
C 语言
C++
C#
MongoDB
MySQL
Javascript
PHP