求下列等差数列的和
(i) 2, 7, 12,…… 至 10 项。
(ii) -37, -33, -29 …… 至 12 项。
(iii) 0.6, 1.7, 2.8,…… 至 100 项。
(iv) $\frac{1}{15}, \frac{1}{12}, \frac{1}{10}, ……..,$ 至 11 项。
解题步骤
我们需要求出给定等差数列的和。
解答
(i) a=2, d=7-2=5, n=10
我们知道:
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{10}=\frac{10}{2}[2 \times 2+(10-1) 5]$
$=5(4+45)$
$=5 \times 49$
$=245$
(ii) a=-37, d=-33-(-37)=-33+37=4, n=12
我们知道:
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{12}=\frac{12}{2}[2 \times(-37)+(12-1) 4]$
$=6(-74+44)$
$=6 \times(-30)$
$=-180$
(iii) a=0.6, d=1.7-0.6=1.1, n=100
我们知道:
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{100}=\frac{100}{2}[2 \times 0.6+(100-1) 1.1]$
$=50(1.2+108.9)$
$=50 \times 110.1$
$=5505$
(iv) $a=\frac{1}{15}, d=\frac{1}{12}-\frac{1}{15}=\frac{5-4}{60}=\frac{1}{60}, n=11$
我们知道:
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{11}=\frac{11}{2}[2 \times \frac{1}{15}+(11-1) \frac{1}{60}]$
$=\frac{11}{2}[\frac{2}{15}+\frac{10}{60}]$
$=\frac{11}{2}(\frac{8+10}{60})$
$=\frac{11}{2} \times \frac{18}{60}$
$=\frac{33}{20}$
- 相关文章
- 求下列等差数列的和:$\frac{1}{15}, \frac{1}{12}, \frac{1}{10}, ……..,$ 至 11 项。
- 求下列等差数列的和:-37, -33, -29 …… 至 12 项。
- 求下列等差数列的和:0.6, 1.7, 2.8, …… 至 100 项。
- $\frac{1}{4 - \sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+\frac{1}{\sqrt{14}-\sqrt{13}}-\frac{1}{\sqrt{13}-\sqrt{12}}+ \frac{1}{\sqrt{12}-\sqrt{11}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{10}-3}=?$
- 对于下列等差数列,写出首项和公差:(i) 3, 1, -1, -3, …… (ii) -5, -1, 3, 7, …… (iii) $\frac{1}{3}, \frac{5}{3}, \frac{9}{3}, \frac{13}{3}, ……..$ (iv) 0.6, 1.7, 2.8, 3.9, ……
- 求下列每个等差数列的项数:(i) 7, 13, 19, …, 205 (ii) 18, 15$\frac{1}{2}$, 13, …, -47
- 求下列等差数列的项数:18, 15$\frac{1}{2}$, 13, …, -47
- 等差数列中共有多少项?-1, -$\frac{5}{6}$, -$\frac{2}{3}$, -$\frac{1}{2}$, …….., $\frac{10}{3}$。
- 在下列每个模式中再写出四个有理数:(i) $\frac{-3}{5},\ \frac{-6}{10},\ \frac{-9}{15},\ \frac{-12}{20}$........(ii) $\frac{-1}{4},\ \frac{-2}{8},\ \frac{-3}{12}$.....(iii) $\frac{-1}{6},\ \frac{2}{-12},\ \frac{3}{-18},\ \frac{4}{-24}$......(iv) $\frac{-2}{3},\ \frac{2}{-3},\ \frac{4}{-6},\ \frac{6}{-9}$.....
- 求等差数列的两个中间项之和:-$\frac{4}{3}, -1, -\frac{2}{3}, -\frac{1}{3}, ......, 4\frac{1}{3}$。
- 下列哪些是等差数列?如果它们构成等差数列,求出公差d,并写出另外三项。-$\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, …….$
- 化简:(i) \( 2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}} \)(ii) \( \left(\frac{1}{3^{3}}\right)^{7} \)(iii) \( \frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}} \)(iv) \( 7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}} \)
- 适当重新排列并求出下列各式的和:(i) \( \frac{11}{12}+\frac{-17}{3}+\frac{11}{2}+\frac{-25}{2} \)(ii) \( \frac{-6}{7}+\frac{-5}{6}+\frac{-4}{9}+\frac{-15}{7} \)(iii) \( \frac{3}{5}+\frac{7}{3}+\frac{9}{5}+\frac{-13}{15}+\frac{-7}{3} \)(iv) \( \frac{4}{13}+\frac{-5}{8}+\frac{-8}{13}+\frac{9}{13} \)(v) \( \frac{2}{3}+\frac{-4}{5}+\frac{1}{3}+\frac{2}{5} \)(vi) \( \frac{1}{8}+\frac{5}{12}+\frac{2}{7}+\frac{7}{12}+\frac{9}{7}+\frac{-5}{16} \)
- 将下列分数表示为小数:(i) $\frac{8}{10}$ (ii) $\frac{12}{15}$
- 将下列每个表达式表示为$\frac{p}{q}$形式的有理数:(i) \( -\frac{8}{3}+\frac{-1}{4}+\frac{-11}{6}+\frac{3}{8}-3 \)(ii) \( \frac{6}{7}+1+\frac{-7}{9}+\frac{19}{21}+\frac{-12}{7} \)(iii) \( \frac{15}{2}+\frac{9}{8}+\frac{-11}{3}+6+\frac{-7}{6} \)(iv) \( \frac{-7}{4}+0+\frac{-9}{5}+\frac{19}{10}+\frac{11}{14} \)(v) \( \frac{-7}{4}+\frac{5}{3}+\frac{-1}{2}+\frac{-5}{6}+2 \)