求下列等差数列的和
$\frac{1}{15}, \frac{1}{12}, \frac{1}{10}, ……..,$ 共 11 项。
已知
已知等差数列为 $\frac{1}{15}, \frac{1}{12}, \frac{1}{10}, ……..,$
求解
我们需要求出该等差数列前 11 项的和。
解答
$a=\frac{1}{15}, d=\frac{1}{12}-\frac{1}{15}=\frac{5-4}{60}=\frac{1}{60}, n=11$
我们知道:
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{11}=\frac{11}{2}[2 \times \frac{1}{15}+(11-1) \frac{1}{60}]$
$=\frac{11}{2}[\frac{2}{15}+\frac{10}{60}]$
$=\frac{11}{2}(\frac{8+10}{60})$
$=\frac{11}{2} \times \frac{18}{60}$
$=\frac{33}{20}$
- 相关文章
- 求下列等差数列的和:(i) $2, 7, 12,……$ 共 10 项。(ii) $-37, -33, -29$ …… 共 12 项。(iii) $0.6, 1.7, 2.8, ……$ 共 100 项。(iv) $\frac{1}{15}, \frac{1}{12}, \frac{1}{10}, ……..,$ 共 11 项。
- $\frac{1}{4 - \sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+\frac{1}{\sqrt{14}-\sqrt{13}}-\frac{1}{\sqrt{13}-\sqrt{12}}+ \frac{1}{\sqrt{12}-\sqrt{11}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{10}-3}=?$
- 求下列乘积:$(1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4}) \ldots(1-\frac{1}{10})$
- 求 $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$ 的和。
- 求和:$18 + 15\frac{1}{2} + 13 + ……… + (-49\frac{1}{2})$
- 下列哪些是等差数列?如果是等差数列,求公差 $d$ 并写出接下来的三项。$-\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, …….$
- 求下列等差数列的项数:$18, 15\frac{1}{2}, 13, …, -47$
- 求等差数列$-\frac{4}{3}, -1, -\frac{2}{3}, -\frac{1}{3}, ......, 4\frac{1}{3}$ 的中间两项之和。
- 解下列方程组: $\frac{1}{(5x)}\ +\ \frac{1}{(6y)}\ =\ 12$ $\frac{1}{(3x)}\ –\ \frac{3}{(7y)}\ =\ 8$
- 计算:$\frac{1}{10} +\frac{1}{20} +\frac{1}{40} +\frac{1}{100}$
- 求下列方程的根:\( \frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}, x ≠ -4,7 \)
- 计算:(a) \( \frac{1}{18}+\frac{1}{18} \)(b) \( \frac{8}{15}+\frac{3}{15} \)(c) \( \frac{7}{7}-\frac{5}{7} \)(d) \( \frac{1}{22}+\frac{21}{22} \)(e) \( \frac{12}{15}-\frac{7}{15} \)(f) \( \frac{5}{8}+\frac{3}{8} \)(g) \( 1-\frac{2}{3}\left(1=\frac{3}{3}\right) \)(h) \( \frac{1}{4}+\frac{0}{4} \)(i) \( 3-\frac{12}{5} \)
- 解下列方程组:$\frac{5}{x+1} -\frac{2}{y-1}=\frac{1}{2}$$\frac{10}{x+1}+\frac{2}{y-1}=\frac{5}{2}$,其中 $x≠-1$ 且 $y≠1$
- 解方程:\( \frac{1}{2}-\frac{9-x}{11}=\frac{3 x}{12} \).
- 化简下列各式:$\frac{1}{3}$ of $1 \frac{1}{4}+2 \frac{1}{3}$