求和:$18 + 15\frac{1}{2} + 13 + ……… + (-49\frac{1}{2})$
已知
已知数列为 $18 + 15\frac{1}{2} + 13 + ……… + (-49\frac{1}{2})$。
要求
我们需要求 $18 + 15\frac{1}{2} + 13 + ……… + (-49\frac{1}{2})$ 的和。
解答
这里,
$18 + 15\frac{1}{2} + 13 + ……… + (-49\frac{1}{2})$ 是一个等差数列。
$a=18, d=15\frac{1}{2}-18=\frac{15(2)+1-18(2)}{2}=\frac{-5}{2}$ 以及 \( l=-49\frac{1}{2} \)
我们知道,
\( a_{n}=a+(n-1) d \)
\( \Rightarrow -49\frac{1}{2}=18+(n-1) \times \frac{-5}{2} \)
$\Rightarrow \frac{-49(2)-1}{2}=\frac{18(2)+(n-1)(-5)}{2}$
\( \Rightarrow -98-1=36-5n+5 \)
\( \Rightarrow 5n=41+99 \)
\( \Rightarrow n=\frac{140}{5}=28 \)
\( \mathrm{S}_{n}=\frac{n}{2}[a+l] \)
$=\frac{28}{2}[18+(-49\frac{1}{2})]$
$=14 \times\frac{18(2)-49(2)-1}{2}$
\( = 14 \times \frac{36-98-1}{2} \)
\( = 14 \times \frac{-63}{2} \)
\( = 7 \times (-63) \)
$= -441$
因此,该数列的和为 $-441$。
- 相关文章
- 求 $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$ 的和。
- 等差数列 $18, 15\frac{1}{2}, 13, …, -47$ 有多少项?
- 求以下等差数列的项数:$18, 15\frac{1}{2}, 13, …, -47$
- 求和:\( \frac{1}{5}+\frac{2}{5} \)。
- 如果 $x^{2}+\frac{1}{x^{2}}=18$,求 $x+\frac{1}{x}$ 和 $x-\frac{1}{x}$ 的值。
- 从 $\frac{-18}{51}$ 和 $\frac{2}{17}$ 的和中减去 $\frac{1}{85}$ 和 $\frac{-2}{5}$ 的和。
- 计算以下表达式$ 5 \frac{7}{13}-1 \frac{1}{2} $
- 化简:\( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y \)。
- 解下列方程组:$\frac{1}{(2x)}\ +\ \frac{1}{(3y)}\ =\ 2$ $\frac{1}{(3x)}\ +\ \frac{1}{(2y)}\ =\ \frac{13}{6}$
- 计算:(a) \( \frac{1}{18}+\frac{1}{18} \)(b) \( \frac{8}{15}+\frac{3}{15} \)(c) \( \frac{7}{7}-\frac{5}{7} \)(d) \( \frac{1}{22}+\frac{21}{22} \)(e) \( \frac{12}{15}-\frac{7}{15} \)(f) \( \frac{5}{8}+\frac{3}{8} \)(g) \( 1-\frac{2}{3}\left(1=\frac{3}{3}\right) \)(h) \( \frac{1}{4}+\frac{0}{4} \)(i) \( 3-\frac{12}{5} \)
- 如果 $\frac{x+1}{y} = \frac{1}{2}, \frac{x}{y-2} = \frac{1}{2}$,求 x 和 y 的值。
- 求以下等差数列的项数:(i) $7, 13, 19, …, 205$(ii) $18, 15\frac{1}{2}, 13, …, -47$
- 因式分解表达式 $\frac{1}{16}x^2y^2-\frac{4}{49}y^2z^2$。
- $\frac{x-1}{2}+\frac{2 x-1}{4}=\frac{x-1}{3}-\frac{2 x-1}{6}$。
- 计算:(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)