减法
从 (9a - 3y + 12z) 中减去 (5a - 13y + 2z)
题目: 从 (9a - 3y + 12z) 中减去 (5a - 13y + 2z)
解答
从 (9a - 3y + 12z) 中减去 (5a - 13y + 2z) 表示:
(9a - 3y + 12z) - (5a - 13y + 2z)
= 9a - 3y + 12z - 5a + 13y - 2z
= 4a + 10y + 10z
所以 (9a - 3y + 12z) - (5a - 13y + 2z) = 4a + 10y + 10z
- 相关文章
- 从 5xy - 2yz - 2zx + 10xyz 中减去 3xy + 5yz - 7zx。
- 从 x² - y² - z² 中减去 x² - y² + z²。
- 因式分解:\( 4x² + 9y² + 16z² + 12xy - 24yz - 16xz \)
- 验证等式:x × (y + z) = x × y + x × z,取:(i) \( x = \frac{-3}{7}, y = \frac{12}{13}, z = \frac{-5}{6} \)(ii) \( x = \frac{-12}{5}, y = \frac{-15}{4}, z = \frac{8}{3} \)(iii) \( x = \frac{-8}{3}, y = \frac{5}{6}, z = \frac{-13}{12} \)(iv) \( x = \frac{-3}{4}, y = \frac{-5}{2}, z = \frac{7}{6} \)
- 验证等式:x × (y × z) = (x × y) × z,取:(i) \( x = \frac{-7}{3}, y = \frac{12}{5}, z = \frac{4}{9} \)(ii) \( x = 0, y = \frac{-3}{5}, z = \frac{-9}{4} \)(iii) \( x = \frac{1}{2}, y = \frac{5}{-4}, z = \frac{-7}{5} \)(iv) \( x = \frac{5}{7}, y = \frac{-12}{13}, z = \frac{-7}{18} \)
- 化简:2x + 3y - 4z - (3y + 5x - 2z)
- 验证等式:\( x³ + y³ + z³ - 3xyz = \frac{1}{2}(x + y + z)[(x - y)² + (y - z)² + (z - x)²] \)
- 因式分解:(i) \( 4x² + 9y² + 16z² + 12xy - 24yz - 16xz \)(ii) \( 2x² + y² + 8z² - 2\sqrt{2}xy + 4\sqrt{2}yz - 8xz \)
- 因式分解:\( 27x³ + y³ + z³ - 9xyz \)
- 如果 \( 3^x = 5^y = (75)^z \),证明 \( z = \frac{xy}{2x + y} \).
- 计算下列乘积:\( \frac{-8}{27}xyz(\frac{3}{2}xyz² - \frac{9}{4}xy²z³) \)
- 如果 \( 2^x = 3^y = 12^z \),证明 \( \frac{1}{z} = \frac{1}{y} + \frac{2}{x} \).
- 计算下列乘积:\( (\frac{-7}{5}xy²z) \times (\frac{13}{3}x²yz²) \)
- 如果 $2^x \times 3^y \times 5^z = 2160$,求 x, y 和 z。然后计算 $3^x \times 2^{-y} \times 5^{-z}$ 的值。
- 计算下列乘积:\( \frac{-4}{27}xyz[\frac{9}{2}x²yz - \frac{3}{4}xyz²] \)