计算
\( \frac{3 \cos 55^{\circ}}{7 \sin 35^{\circ}}-\frac{4\left(\cos 70^{\circ} \operatorname{cosec} 20^{\circ}\right)}{7\left(\tan 5^{\circ} \tan 25^{\circ} \tan 45^{\circ} \tan 65^{\circ} \tan 85^{\circ}\right)} \)
已知
\( \frac{3 \cos 55^{\circ}}{7 \sin 35^{\circ}}-\frac{4\left(\cos 70^{\circ} \operatorname{cosec} 20^{\circ}\right)}{7\left(\tan 5^{\circ} \tan 25^{\circ} \tan 45^{\circ} \tan 65^{\circ} \tan 85^{\circ}\right)} \).
要求
我们需要计算 \( \frac{3 \cos 55^{\circ}}{7 \sin 35^{\circ}}-\frac{4\left(\cos 70^{\circ} \operatorname{cosec} 20^{\circ}\right)}{7\left(\tan 5^{\circ} \tan 25^{\circ} \tan 45^{\circ} \tan 65^{\circ} \tan 85^{\circ}\right)} \).
解:
我们知道,
$cos\ (90^{\circ}- \theta) = sin\ \theta$
$tan\ (90^{\circ}- \theta) = cot\ \theta$
$tan\ \theta \times \cot\ \theta=1$
$sin\ \theta \times \operatorname{cosec}\ \theta=1$
因此,
$\frac{3 \cos 55^{\circ}}{7 \sin 35^{\circ}}-\frac{4\left(\cos 70^{\circ} \operatorname{cosec} 20^{\circ}\right)}{7\left(\tan 5^{\circ} \tan 25^{\circ} \tan 45^{\circ} \tan 65^{\circ} \tan 85^{\circ}\right)}=\frac{3\cos( 90^{\circ}-35^{\circ})}{7\sin 35^{\circ}} -\frac{4[\cos( 90^{\circ}-20^{\circ}) \operatorname{cosec}20^{\circ}]}{7[\tan 5^{\circ}\tan 25^{\circ}( 1)\tan( 90^{\circ}-25^{\circ})\tan( 90^{\circ}-5^{\circ})]}$
$=\frac{3\sin 35^{\circ}}{7\sin 35^{\circ}} -\frac{4\sin 20^{\circ}\operatorname{cosec}20^{\circ}}{7\tan 5^{\circ}\tan 25^{\circ}\cot 25^{\circ}\cot 5^{\circ}}$
$=\frac{3}{7} -\frac{4}{7( 1)( 1)}$
$=\frac{3-4}{7}$
$=\frac{-1}{7}$
因此, $\frac{3 \cos 55^{\circ}}{7 \sin 35^{\circ}}-\frac{4\left(\cos 70^{\circ} \operatorname{cosec} 20^{\circ}\right)}{7\left(\tan 5^{\circ} \tan 25^{\circ} \tan 45^{\circ} \tan 65^{\circ} \tan 85^{\circ}\right)}=\frac{-1}{7}$.