计算
\( \operatorname{cosec}\left(65^{\circ}+\theta\right)-\sec \left(25^{\circ}-\theta\right)-\tan \left(55^{\circ}-\theta\right)+\cot \left(35^{\circ}+\theta\right) \)


已知

\( \operatorname{cosec}\left(65^{\circ}+\theta\right)-\sec \left(25^{\circ}-\theta\right)-\tan \left(55^{\circ}-\theta\right)+\cot \left(35^{\circ}+\theta\right) \)

要求

我们需要计算\( \operatorname{cosec}\left(65^{\circ}+\theta\right)-\sec \left(25^{\circ}-\theta\right)-\tan \left(55^{\circ}-\theta\right)+\cot \left(35^{\circ}+\theta\right) \).

解:

我们知道:

$\operatorname{cosec}\ (90^{\circ}- \theta) =\sec\ \theta$

$cot\ (90^{\circ}- \theta) = tan\ \theta$

因此:

$\operatorname{cosec}\left(65^{\circ}+\theta\right)-\sec \left(25^{\circ}-\theta\right)-\tan \left(55^{\circ}-\theta\right)+\cot \left(35^{\circ}+\theta\right)$

$=\operatorname{cosec}(90^{\circ}-(25^{\circ}-\theta))-\sec \left(25^{\circ}-\theta\right)-\tan \left(55^{\circ}-\theta\right)+\cot (90^{\circ}-(55^{\circ}-\theta))$

$=\sec (25^{\circ}-\theta)-\sec \left(25^{\circ}-\theta\right)-\tan \left(55^{\circ}-\theta\right)+\tan (55^{\circ}-\theta)$

$=0$

因此,$\operatorname{cosec}\left(65^{\circ}+\theta\right)-\sec \left(25^{\circ}-\theta\right)-\tan \left(55^{\circ}-\theta\right)+\cot \left(35^{\circ}+\theta\right)=0$。   

更新于: 2022年10月10日

72 次浏览

开启你的职业生涯

完成课程获得认证

开始学习
广告
© . All rights reserved.