证明以下等式:\( \sin \left(50^{\circ}+\theta\right)-\cos \left(40^{\circ}-\theta\right)+\tan 1^{\circ} \tan 10^{\circ} \tan 20^{\circ} \tan 70^{\circ} \tan 80^{\circ} \tan 89^{\circ}=1 \)


待办事项

我们需要证明 $\sin \left(50^{\circ}+\theta\right)-\cos \left(40^{\circ}-\theta\right)+\tan 1^{\circ} \tan 10^{\circ} \tan 20^{\circ} \tan 70^{\circ} \tan 80^{\circ} \tan 89^{\circ}=1$。

解答:  

我们知道:

$sin\ (90^{\circ}- \theta) = cos\ \theta$

$tan\ (90^{\circ}- \theta) = cot\ \theta$

$tan\ \theta \times \cot\ \theta=1$

因此:

$\sin \left(50^{\circ}+\theta\right)-\cos \left(40^{\circ}-\theta\right)+\tan 1^{\circ} \tan 10^{\circ} \tan 20^{\circ} \tan 70^{\circ} \tan 80^{\circ} \tan 89^{\circ}$

$=\sin (90^{\circ}-(40^{\circ}-\theta))-\cos (40^{\circ}-\theta)+\tan 1^{\circ} \tan 10^{\circ} \tan 20^{\circ} \tan (90^{\circ}-20^{\circ}) \tan (90^{\circ}-10^{\circ}) \tan (90^{\circ}-1^{\circ})$

$=\cos (40^{\circ}-\theta)-\cos (40^{\circ}-\theta)+\tan 1^{\circ} \tan 10^{\circ} \tan 20^{\circ} \cot 20^{\circ} \cot 10^{\circ} \cot 1^{\circ}$

$=(\tan 1^{\circ} \cot 1^{\circ})(\tan 10^{\circ} \cot 10^{\circ})(\tan 20^{\circ} \cot 20^{\circ})$

$=1\times1\times1$

$=1$

证毕。

更新于: 2022年10月10日

59 次浏览

开启你的 职业生涯

完成课程获得认证

立即开始
广告

© . All rights reserved.