计算
\( \frac{\cos 58^{\circ}}{\sin 32^{\circ}}+\frac{\sin 22^{\circ}}{\cos 68^{\circ}}-\frac{\cos 38^{\circ} \operatorname{cosec} 52^{\circ}}{\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan 72^{\circ} \tan 55^{\circ}} \)
已知
\( \frac{\cos 58^{\circ}}{\sin 32^{\circ}}+\frac{\sin 22^{\circ}}{\cos 68^{\circ}}-\frac{\cos 38^{\circ} \operatorname{cosec} 52^{\circ}}{\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan 72^{\circ} \tan 55^{\circ}} \).
要求
我们需要计算 \( \frac{\cos 58^{\circ}}{\sin 32^{\circ}}+\frac{\sin 22^{\circ}}{\cos 68^{\circ}}-\frac{\cos 38^{\circ} \operatorname{cosec} 52^{\circ}}{\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan 72^{\circ} \tan 55^{\circ}} \).
解:
我们知道,
$cos\ (90^{\circ}- \theta) = sin\ \theta$
$tan\ (90^{\circ}- \theta) = cot\ \theta$
$tan\ \theta \times \cot\ \theta=1$
$sin\ \theta \times \operatorname{cosec}\ \theta=1$
因此,
$\frac{\cos 58^{\circ}}{\sin 32^{\circ}}+\frac{\sin 22^{\circ}}{\cos 68^{\circ}}-\frac{\cos 38^{\circ} \operatorname{cosec} 52^{\circ}}{\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan 72^{\circ} \tan 55^{\circ}}=\frac{\cos( 90^{\circ}-32^{\circ})}{\sin 32^{\circ}} +\frac{\sin 22^{\circ}}{\cos( 90^{\circ}-22^{\circ})} -\frac{\cos( 90^{\circ}-22^{\circ}) \operatorname{cosec} 52^{\circ}}{\tan 18^{\circ}\tan 35^{\circ}\left(\sqrt{3}\right)\tan( 90^{\circ}-35^{\circ})\tan( 90^{\circ}-18^{\circ})}$
$=\frac{\sin 32^{\circ}}{\sin 32^{\circ}} +\frac{\sin 22^{\circ}}{\sin 22^{\circ}} -\frac{\sin 22^{\circ}\operatorname{cosec} 52^{\circ}}{\tan 18^{\circ}\tan 35^{\circ}\left(\sqrt{3}\right)\cot 35^{\circ}\cot 18^{\circ}}$
$=1+1-\frac{1}{( 1)\left(\sqrt{3}\right)( 1)}$
$=2-\frac{1}{\sqrt{3}}$
$=\frac{2\sqrt{3} -1}{\sqrt{3}}$
$=\frac{\left( 2\sqrt{3} -1\right)\sqrt{3}}{\sqrt{3} \times \sqrt{3}}$
$=\frac{2( 3) -1\left(\sqrt{3}\right)}{3}$
$=\frac{6-\sqrt{3}}{3}$
因此, $\frac{\cos 58^{\circ}}{\sin 32^{\circ}}+\frac{\sin 22^{\circ}}{\cos 68^{\circ}}-\frac{\cos 38^{\circ} \operatorname{cosec} 52^{\circ}}{\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan 72^{\circ} \tan 55^{\circ}}=\frac{6-\sqrt{3}}{3}$.