- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- MS Excel
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP
- Physics
- Chemistry
- Biology
- Mathematics
- English
- Economics
- Psychology
- Social Studies
- Fashion Studies
- Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Evaluate:
\( \left(\frac{3 \tan 41^{\circ}}{\cot 49^{\circ}}\right)^{2}-\left(\frac{\sin 35^{\circ} \sec 55^{\circ}}{\tan 10^{\circ} \tan 20^{\circ} \tan 60^{\circ} \tan 70^{\circ} \tan 80^{\circ}}\right)^{2} \)
Given:
\( \left(\frac{3 \tan 41^{\circ}}{\cot 49^{\circ}}\right)^{2}-\left(\frac{\sin 35^{\circ} \sec 55^{\circ}}{\tan 10^{\circ} \tan 20^{\circ} \tan 60^{\circ} \tan 70^{\circ} \tan 80^{\circ}}\right)^{2} \).
To do:
We have to evaluate \( \left(\frac{3 \tan 41^{\circ}}{\cot 49^{\circ}}\right)^{2}-\left(\frac{\sin 35^{\circ} \sec 55^{\circ}}{\tan 10^{\circ} \tan 20^{\circ} \tan 60^{\circ} \tan 70^{\circ} \tan 80^{\circ}}\right)^{2} \).
Solution:
We know that,
$cos\ (90^{\circ}- \theta) = sin\ \theta$
$tan\ (90^{\circ}- \theta) = cot\ \theta$
$tan\ \theta \times \cot\ \theta=1$
$cos\ \theta \times \sec\ \theta=1$
Therefore,
$\left(\frac{3 \tan 41^{\circ}}{\cot 49^{\circ}}\right)^{2}-\left(\frac{\sin 35^{\circ} \sec 55^{\circ}}{\tan 10^{\circ} \tan 20^{\circ} \tan 60^{\circ} \tan 70^{\circ} \tan 80^{\circ}}\right)^{2}=\left[\frac{3\tan( 90^{\circ}-49^{\circ})}{\cot 49^{\circ}}\right]^{2} -\left[\frac{\sin( 90^{\circ}-55^{\circ})\sec 55^{\circ}}{\tan 10^{\circ}\tan 20^{\circ}\left(\sqrt{3}\right)\tan( 90^{\circ}-20^{\circ})\tan( 90^{\circ}-10^{\circ})}\right]^{2}$
$=\left(\frac{\cot 49^{\circ}}{\cot 49^{\circ}}\right)^{2} -\left(\frac{\cos 55^{\circ}\sec 55^{\circ}}{\tan 10^{\circ}\tan 20^{\circ}\left(\sqrt{3}\right)\cot 20^{\circ}\cot 10^{\circ}}\right)^{2}$
$=( 1)^{2} -\left(\frac{1}{( 1)\left(\sqrt{3}\right)( 1)}\right)^{2}$
$=1-\left(\frac{1}{\sqrt{3}}\right)^{2}$
$=1-\frac{1}{3}$
$=\frac{1( 3) -1}{3}$
$=\frac{3-1}{3}$
$=\frac{2}{3}$
Hence, $\left(\frac{3 \tan 41^{\circ}}{\cot 49^{\circ}}\right)^{2}-\left(\frac{\sin 35^{\circ} \sec 55^{\circ}}{\tan 10^{\circ} \tan 20^{\circ} \tan 60^{\circ} \tan 70^{\circ} \tan 80^{\circ}}\right)^{2}=\frac{2}{3}$.