证明以下等式
\( \frac{\cos \left(90^{\circ}-\theta\right) \sec \left(90^{\circ}-\theta\right) \tan \theta}{\operatorname{cosec}\left(90^{\circ}-\theta\right) \sin \left(90^{\circ}-\theta\right) \cot \left(90^{\circ}-\theta\right)} \) \(+\frac{\tan (90^{\circ}- \theta)}{\cot \theta} = 2 \)


待办事项

我们需要证明\( \frac{\cos \left(90^{\circ}-\theta\right) \sec \left(90^{\circ}-\theta\right) \tan \theta}{\operatorname{cosec}\left(90^{\circ}-\theta\right) \sin \left(90^{\circ}-\theta\right) \cot \left(90^{\circ}-\theta\right)} \) \(+\frac{\tan (90^{\circ}- \theta)}{\cot \theta} = 2 \).

解答:  

我们知道:

$sin\ (90^{\circ}- \theta) = cos\ \theta$

$cos\ (90^{\circ}- \theta) = sin\ \theta$

$tan\ (90^{\circ}- \theta) = cot\ \theta$

$cot\ (90^{\circ}- \theta) = tan\ \theta$

$cosec (90^{\circ}- \theta) = sec\ \theta$

$sec\ (90^{\circ}- \theta) = cosec\ \theta$

$sin\ \theta \times cosec\ \theta=1$

$cos\ \theta \times sec\ \theta=1$

因此,

$\frac{\cos \left(90^{\circ}-\theta\right) \sec \left(90^{\circ}-\theta\right) \tan \theta}{\operatorname{cosec}\left(90^{\circ}-\theta\right) \sin \left(90^{\circ}-\theta\right) \cot \left(90^{\circ}-\theta\right)}+\frac{\tan (90^{\circ}- \theta)}{\cot \theta}=\frac{\sin \theta \operatorname{cosec} \theta \tan \theta}{sec \theta \cos \theta \tan \theta}+\frac{\cot \theta}{\cot \theta}$

$=\frac{1\times \tan \theta}{1\times \tan \theta}+1$

$=1+1$

$=2$

证毕。   

更新于: 2022年10月10日

61 次浏览

开启您的职业生涯

完成课程获得认证

开始学习
广告