证明以下等式
\( \frac{\cos \left(90^{\circ}-\theta\right) \sec \left(90^{\circ}-\theta\right) \tan \theta}{\operatorname{cosec}\left(90^{\circ}-\theta\right) \sin \left(90^{\circ}-\theta\right) \cot \left(90^{\circ}-\theta\right)} \) \(+\frac{\tan (90^{\circ}- \theta)}{\cot \theta} = 2 \)
待办事项
我们需要证明\( \frac{\cos \left(90^{\circ}-\theta\right) \sec \left(90^{\circ}-\theta\right) \tan \theta}{\operatorname{cosec}\left(90^{\circ}-\theta\right) \sin \left(90^{\circ}-\theta\right) \cot \left(90^{\circ}-\theta\right)} \) \(+\frac{\tan (90^{\circ}- \theta)}{\cot \theta} = 2 \).
解答:
我们知道:
$sin\ (90^{\circ}- \theta) = cos\ \theta$
$cos\ (90^{\circ}- \theta) = sin\ \theta$
$tan\ (90^{\circ}- \theta) = cot\ \theta$
$cot\ (90^{\circ}- \theta) = tan\ \theta$
$cosec (90^{\circ}- \theta) = sec\ \theta$
$sec\ (90^{\circ}- \theta) = cosec\ \theta$
$sin\ \theta \times cosec\ \theta=1$
$cos\ \theta \times sec\ \theta=1$
因此,
$\frac{\cos \left(90^{\circ}-\theta\right) \sec \left(90^{\circ}-\theta\right) \tan \theta}{\operatorname{cosec}\left(90^{\circ}-\theta\right) \sin \left(90^{\circ}-\theta\right) \cot \left(90^{\circ}-\theta\right)}+\frac{\tan (90^{\circ}- \theta)}{\cot \theta}=\frac{\sin \theta \operatorname{cosec} \theta \tan \theta}{sec \theta \cos \theta \tan \theta}+\frac{\cot \theta}{\cot \theta}$
$=\frac{1\times \tan \theta}{1\times \tan \theta}+1$
$=1+1$
$=2$
证毕。