求以下两数的最大公约数(HCF):56 和 88
已知:56 和 88。
求解:我们需要求出已知数的最大公约数。
解题步骤
使用欧几里得除法算法求最大公约数
使用欧几里得引理得到:
- $88\ =\ 56\ \times\ 1\ +\ 32$
现在,考虑除数 56 和余数 32,并应用除法引理得到
- $56\ =\ 32\ \times\ 1\ +\ 24$
现在,考虑除数 32 和余数 24,并应用除法引理得到
- $32\ =\ 24\ \times\ 1\ +\ 8$
现在,考虑除数 24 和余数 8,并应用除法引理得到
- $24\ =\ 8\ \times\ 3\ +\ 0$
余数已变为零,我们无法继续进行。
因此,88 和 56 的最大公约数是此时此刻的除数,即8。
所以,56 和 88 的最大公约数是 8。
广告