求解方程组有无穷多解时k的值

2x + 3y = 2
(k + 2)x + (2k + 1)y = 2(k - 1)


已知:方程组为

2x + 3y = 2; (k + 2)x + (2k + 1)y = 2(k - 1)

求解: 求解方程组有无穷多解时k的值


解:

给定的方程组可以写成

2x + 3y = 2


(k + 2)x + (2k + 1)y = 2(k - 1)


给定的方程组的形式为


a₁x + b₁y + c₁ = 0


a₂x + b₂y + c₂ = 0


这里,a₁ = 2, b₁ = 3, c₁ = -2; a₂ = (k + 2), b₂ = 2k + 1, c₂ = -2(k - 1)


对于无穷多解,必须有:


a₁/a₂ = b₁/b₂ = c₁/c₂


2/(k + 2) = 3/(2k + 1) = -2/[-2(k - 1)]


2/(k + 2) = 3/(2k + 1) = 1/(k - 1)


2/(k + 2) = 3/(2k + 1) 且 3/(2k + 1) = 1/(k - 1)


2(2k + 1) = 3(k + 2) 且 3(k - 1) = 2k + 1


4k + 2 = 3k + 6 且 3k - 3 = 2k + 1


4k - 3k = -2 + 6 且 3k - 2k = 3 + 1


k = 4 且 k = 4


k = 4 满足两个条件


因此,当k = 4时,给定的方程组有无穷多解




更新于:2022年10月10日

97 次浏览

开启你的职业生涯

完成课程获得认证

开始学习
广告
© . All rights reserved.