求使下列方程组有无穷多解的k值
kx + 3y = 2k + 1
2(k + 1)x + 9y = 7k + 1
已知:方程组为 kx + 3y = 2k + 1; 2(k + 1)x + 9y = 7k + 1
求解: 求使方程组有无穷多解的k值
解:
给定的方程组可以写成
kx + 3y = 2k + 1
2(k + 1)x + 9y = 7k + 1
给定的方程组的形式为
a₁x + b₁y + c₁ = 0
a₂x + b₂y + c₂ = 0
这里,a₁ = k, b₁ = 3, c₁ = -(2k + 1); a₂ = 2(k + 1), b₂ = 9, c₂ = -(7k + 1)
为了有唯一解,必须有:
a₁/a₂ = b₁/b₂ = c₁/c₂
k/[2(k + 1)] = 3/9 = -(2k + 1)/-(7k + 1)
k/[2(k + 1)] = 1/3 = (2k + 1)/(7k + 1)
k/(2k + 2) = 1/3 且 1/3 = (2k + 1)/(7k + 1)
3k = 2k + 2 且 7k + 1 = 6k + 3
3k - 2k = 2 且 7k - 6k = 3 - 1
k = 2 且 k = 2
k = 2 满足两个条件
因此,当k = 2时,给定的方程组有无穷多解
广告