求解以下方程组有无数解时k的值
2x + 3y – 5 = 0
6x + ky – 15 = 0
已知:方程组为
2x + 3y – 5 = 0; 6x + ky – 15 = 0
求解: 求解当方程组有无数解时k的值
解:
给定的方程组可以写成
2x + 3y – 5 = 0
6x + ky – 15 = 0
给定的方程组的形式为
a₁x + b₁y + c₁ = 0
a₂x + b₂y + c₂ = 0
这里,a₁=2, b₁=3, c₁=-5; a₂=6, b₂=k, c₂=-15
为了得到唯一解,必须有:
a₁/a₂ = b₁/b₂ = c₁/c₂
2/6 = 3/k = -5/-15
1/3 = 3/k = 1/3
1/3 = 3/k 且 3/k = 1/3
k = 9 且 k = 9
k=9 满足这两个条件
因此,当k=9时,给定的方程组有无数解
广告