根据括号中的运算,重新列出方程:
(i) $ 2 x+3=13 $ [乘以 2 ]
(ii) $ 3 y-3=21 $ [加 5]
(iii) $5 x+14=24 $ [减 6]
(iv) $ 10 y+6=36 $ [除以 2]
解答
i) $2x+ 3 = 13$ [乘以 2]
=>$2(2x+3) = 2\times13$
=>$4x + 6 = 26$
ii) $3y-3 = 21$ [加 5]
=>$3y - 3 + 5 = 21 + 5$
=>$3y + 2 = 26$
iii) 5x + 14 = 24 [减 6]
=>$ 5x + 14 - 6 = 24 - 6$
=>$5x + 8 = 18$
iv) 10y + 6 = 36 [除以 2]
=>$5y + 3 = 18$
- 相关文章
- 因式分解:(i) \( x^{3}-2 x^{2}-x+2 \)(ii) \( x^{3}-3 x^{2}-9 x-5 \)(iii) \( x^{3}+13 x^{2}+32 x+20 \)(iv) \( 2 y^{3}+y^{2}-2 y-1 \)
- 计算乘积:$(x^6-y^6)$ 乘以 $(x^2+y^2)$
- 计算乘积:\( \left(3 x^{2} y-5 x y^{2}\right) \) 乘以 \( \left(\frac{1}{5} x^{2}+\frac{1}{3} y^{2}\right) \)
- 解方程组:$\frac{3 x}{2}-\frac{5 y}{3}=-2$$\frac{x}{3}+\frac{y}{2}=\frac{13}{6}$
- 将下列线性方程表示为 \( a x+b y+c=0 \) 的形式,并分别指出 a、b 和 c 的值:(i) \( 2 x+3 y=9.3 \overline{5} \)(ii) \( x-\frac{y}{5}-10=0 \)(iii) \( -2 x+3 y=6 \)(iv) \( x=3 y \)(v) \( 2 x=-5 y \)(vi) \( 3 x+2=0 \)(vii) \( y-2=0 \)(viii) \( 5=2 x \)
- 因式分解:\( x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3} \)
- 用代入法解下列线性方程组。(i) $x + y = 14, x – y = 4$(ii) $s – t = 3, \frac{s}{3} + \frac{t}{2} = 6$(iii) $3x – y = 3, 9x – 3y = 9$(iv) $0.2x + 0.3y = 1.3, 0.4x + 0.5y = 2.3$(v) \( \sqrt{2} x+\sqrt{3} y=0, \sqrt{3} x-\sqrt{8} y=0 \)(vi) \( \frac{3 x}{2}-\frac{5 y}{3}=-2, \frac{x}{3}+\frac{y}{2}=\frac{13}{6} \).
- 计算乘积:\( \left(\frac{3}{5} x+\frac{1}{2} y\right) \) 乘以 \( \left(\frac{5}{6} x+4 y\right) \)
- 将下列方程组化简为线性方程组,然后求解:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \)(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- 计算下列差:(i) 从 $12xy$ 中减去 $-5xy$(ii) 从 $-7a^2$ 中减去 $2a^2$(iii) 从 \( 3 a-5 b \) 中减去 \( 2 a-b \)(iv) 从 \( 4 x^{3}+x^{2}+x+6 \) 中减去 \( 2 x^{3}-4 x^{2}+3 x+5 \)(v) 从 \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \) 中减去 \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \)(vi) 从 \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \) 中减去 \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \)(vii) 从 \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \) 中减去 \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \)(viii) 从 \( \frac{3}{5} b c-\frac{4}{5} a c \) 中减去 \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \)
- 计算下列代数表达式的和(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- 因式分解:(i) \( 12 x^{2}-7 x+1 \)(ii) \( 2 x^{2}+7 x+3 \)(iii) \( 6 x^{2}+5 x-6 \)(iv) \( 3 x^{2}-x-4 \)
- 计算商:$x^3 - 3 x^2 + 5 x - 3$ 除以 $x^2 -2$
- 验证等式:$x \times(y + z) = x \times y + x \times z$,其中:(i) \( x=\frac{-3}{7}, y=\frac{12}{13}, z=\frac{-5}{6} \)(ii) \( x=\frac{-12}{5}, y=\frac{-15}{4}, z=\frac{8}{3} \)(iii) \( x=\frac{-8}{3}, y=\frac{5}{6}, z=\frac{-13}{12} \)(iv) \( x=\frac{-3}{4}, y=\frac{-5}{2}, z=\frac{7}{6} \)
- $36 x^{2}-81 y^{2}$ 的简化形式是i$(6 x+9 y)(6 x-9 y) $ii$(6 x+9 y)(4 x-5) $iii.$(9 x+6 y)(9 x-6 y)$iv. $(9 y-6 x)(9 y+6 x) $