Represent \( \frac{-2}{11}, \frac{-5}{11}, \frac{-9}{11} \) on the number line.
To do :
We have to represent \( \frac{-2}{11}, \frac{-5}{11}, \frac{-9}{11} \) on the number line.
Solution :
1) Draw a number line.
2) The numbers \( \frac{-2}{11}, \frac{-5}{11}, \frac{-9}{11} \) are negative numbers so they will be on the left of zero. T he number lies between $0$ and $-1$.
3) Divide the line segment between $-1$ and $0$ into 11 parts(11 is the denominator here).
The numbers \( \frac{-2}{11}, \frac{-5}{11}, \frac{-9}{11} \) are shown below:
Related Articles Simplify:\( 2 \frac{3}{11}+\frac{9}{-11} \)
Solve the following$\frac{5}{7}+\frac{2}{11}+\frac{-8}{7}+\frac{6}{11} $
Evaluate using distributive property:$\frac{9}{5} \times (-\frac{3}{11}) + \frac{1}{5} \times (-\frac{3}{11})$.
Multiply:(i) \( \frac{7}{11} \) by \( \frac{5}{4} \)(ii) \( \frac{5}{7} \) by \( \frac{-3}{4} \)(iii) \( \frac{-2}{9} \) by \( \frac{5}{11} \)(iv) \( \frac{-3}{17} \) by \( \frac{-5}{-4} \)(v) \( \frac{9}{-7} \) by \( \frac{36}{-11} \)(vi) \( \frac{-11}{13} \) by \( \frac{-21}{7} \)(vii)\( -\frac{3}{5} \) by \( -\frac{4}{7} \)(viii) \( -\frac{15}{11} \) by 7
Solve:$\frac{17}{9}-\frac{2}{15}+\frac{11}{18}$
Find the product:$(i)$. $\frac{9}{2}\times(-\frac{7}{4})$$(ii)$. $\frac{3}{10}\times(-9)$$(iii)$. $-\frac{6}{5}\times\frac{9}{11}$$(iv)$. $\frac{3}{7}\times(-\frac{2}{5})$$(v)$. $\frac{3}{11}\times\ \frac{2}{5}$$(vi)$. $\frac{3}{-5}\times(-\frac{5}{3})$
Which of the following is equal to \( \frac{11}{56} \div \frac{7}{8} ? \)a) \( \frac{11}{64} \)b) \( \frac{11}{49} \)c) \( \frac{49}{11} \)d) \( \frac{64}{11} \)
Find three rational numbers between $\frac{5}{9}$ and $\frac{9}{11}$
Solve: \( \frac{1}{2}-\frac{9-x}{11}=\frac{3 x}{12} \).
Find the sum:$(i)$. $\frac{5}{4}+(-\frac{11}{4})$$(ii)$. $\frac{5}{3}+\frac{3}{5}$$(iii)$. $\frac{-9}{10}+\ \frac{22}{15}$$(iv)$. $\frac{-3}{11}+\frac{5}{9}$$(v)$. $\frac{-8}{19}+(-\frac{2}{57})$$(vi)$. $-\frac{2}{3}+0$$(vii)$. $-2\frac{1}{3}\ +\ 4\frac{3}{5}$
Subtract the first rational number from the second in each of the following:(i) \( \frac{3}{8}, \frac{5}{8} \)(ii) \( \frac{-7}{9}, \frac{4}{9} \)(iii) \( \frac{-2}{11}, \frac{-9}{11} \)(iv) \( \frac{11}{13}, \frac{-4}{13} \)(v) \( \frac{1}{4}, \frac{-3}{8} \)(vi) \( \frac{-2}{3}, \frac{5}{6} \)(vii) \( \frac{-6}{7}, \frac{-13}{14} \)(viii) \( \frac{-8}{33}, \frac{-7}{22} \)
Evaluate:\( \frac{3}{7}+\frac{-4}{9}+\frac{-11}{7}+\frac{7}{9} \)
Represent $\frac{4}{3}$ and $\frac{-2}{9}$ on the number line.
Show the following numbers on a number line. Draw a separate number line for each example.(1) $\frac{3}{2}, \frac{5}{2},-\frac{3}{2}$.(2) $\frac{7}{5}, \frac{-2}{5}, \frac{-4}{5}$.(3) $\frac{-5}{8}, \frac{11}{8}$.(4) $\frac{13}{10}, \frac{-17}{10}$.
Express each of the following as a rational number of the form $\frac{p}{q}$(i) \( -\frac{8}{3}+\frac{-1}{4}+\frac{-11}{6}+\frac{3}{8}-3 \)(ii) \( \frac{6}{7}+1+\frac{-7}{9}+\frac{19}{21}+\frac{-12}{7} \)(iii) \( \frac{15}{2}+\frac{9}{8}+\frac{-11}{3}+6+\frac{-7}{6} \)(iv) \( \frac{-7}{4}+0+\frac{-9}{5}+\frac{19}{10}+\frac{11}{14} \)(v) \( \frac{-7}{4}+\frac{5}{3}+\frac{-1}{2}+\frac{-5}{6}+2 \)
Kickstart Your Career
Get certified by completing the course
Get Started