显示
1-sin60* = tan60*-1
给定: 1-sin60* = tan60*-1
待做:证明 LHS =RHS
解
让我们化简 LEFT HAND SIDE
= $\frac{1 -sin60°}{cos60°}$
= $\frac{1 - \frac{\sqrt{3}}{2}}{\frac{1}{2}}$
= $(2-\sqrt{3})$
让我们化简 RIGHT HAND SIDE
= $\frac{ tan60° -1}{tan60° +1}$
=$\frac{\sqrt{3} -1}{\sqrt{3} +1}$
=$\frac{(\sqrt{3} -1)(\sqrt{3} -1)}{(\sqrt{3} +1)(\sqrt{3} -1)}$
=$\frac{ \sqrt{3^2} +1^2 -2√3}{\sqrt{3^2}-1}$
=$\frac{ 4-2\sqrt{3}}{2}$
= $2 -\sqrt{3}$
因此,LHS = RHS
广告