证明
(i) \( \frac{\sqrt[3]{729}}{\sqrt[3]{1000}}=\sqrt[3]{\frac{729}{1000}} \)
(ii) \( \frac{\sqrt[3]{-512}}{\sqrt[3]{343}}=\sqrt[3]{\frac{-512}{343}} \)
求解:
我们需要证明
(i) \( \frac{\sqrt[3]{729}}{\sqrt[3]{1000}}=\sqrt[3]{\frac{729}{1000}} \)
(ii) \( \frac{\sqrt[3]{-512}}{\sqrt[3]{343}}=\sqrt[3]{\frac{-512}{343}} \)
解
(i) 左边 (LHS) \(=\frac{\sqrt[3]{729}}{\sqrt[3]{1000}}\)
\(=\frac{\sqrt[3]{9 \times 9 \times 9}}{\sqrt[3]{10 \times 10 \times 10}}\)
\(=\frac{\sqrt[3]{9^{3}}}{\sqrt[3]{10^{3}}}\)
\(=\frac{9}{10}\)
$=0.9$
右边 (RHS) \(=\sqrt[3]{\frac{729}{1000}}\)
\(=\sqrt[3]{\frac{9 \times 9 \times 9}{10 \times 10 \times 10}}\)
\(=\sqrt[3]{\frac{9}{10} \times \frac{9}{10} \times \frac{9}{10}}\)
\(=\sqrt[3]{(\frac{9}{10})^{3}}\)
\(=\frac{9}{10}\)
$=0.9$
LHS = RHS
证毕。
(ii) 左边 (LHS) \(=\frac{\sqrt[3]{-512}}{\sqrt[3]{343}}\)
\(=\frac{-\sqrt[3]{512}}{\sqrt[3]{343}}\)
\(=\frac{-\sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}}{\sqrt[3]{7 \times 7 \times 7}}\)
\(=\frac{-\sqrt[3]{2^{3} \times 2^{3} \times 2^{3}}}{\sqrt[3]{7^{3}}}\)
\(=\frac{-2 \times 2 \times 2}{7}\)
\(=\frac{-8}{7}\)
右边 (RHS) \(=\sqrt[3]{\frac{-512}{343}}\)
\(=-\sqrt[3]{\frac{512}{343}}\)
\(=-\sqrt[3]{\frac{8 \times 8 \times 8}{7 \times 7 \times 7}}\)
\(=-\sqrt[3]{(\frac{8}{7} \times \frac{8}{7} \times \frac{8}{7})}\)
LHS = RHS
证毕。