证明
(i) 3√7293√1000=3√7291000
(ii) 3√−5123√343=3√−512343
求解:
我们需要证明
(i) 3√7293√1000=3√7291000
(ii) 3√−5123√343=3√−512343
解
(i) 左边 (LHS) =3√7293√1000
=3√9×9×93√10×10×10
=3√933√103
=910
=0.9
右边 (RHS) =3√7291000
=3√9×9×910×10×10
=3√910×910×910
=3√(910)3
=910
=0.9
LHS = RHS
证毕。
(ii) 左边 (LHS) =3√−5123√343
=−3√5123√343
=−3√2×2×2×2×2×2×2×2×23√7×7×7
=−3√23×23×233√73
=−2×2×27
=−87
右边 (RHS) =3√−512343
=−3√512343
=−3√8×8×87×7×7
=−3√(87×87×87)
LHS = RHS
证毕。
广告